Beginning Anomaly Detection Using


activation: Pass in either the activation function (see the Activations



Download 26,57 Mb.
Pdf ko'rish
bet220/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   216   217   218   219   220   221   222   223   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

activation: Pass in either the activation function (see the Activations 

section) or some Theanos or TensorFlow operation.

To understand what an activation function is, Figure 

A-13

 shows what each artificial 



neuron looks like.

Figure A-13.  The activation function is applied to the output of the function the 

node carries out on the input

The activation passes in the output from the input 

∗ weights + bias and passes it into 

the activation function. If there is no activation function, then that input just gets passed 

along as the output.

 Dropout

keras.layers.Dropout()

What the dropout layer does is take some float 

f proportion of nodes in the preceding 

layer and “deactivates” them, meaning they don’t connect to the next layer. This can help 

combat overfitting on the training data.

Appendix A   intro to KerAs




332

Here are the parameters:

• 

rate: A float value between 0 and 1 that indicates the proportion of 

input units to drop.

• 

noise_shape: A 1D integer binary tensor that is multiplied with 

the input to determine what units are turned on or off. Instead of 

randomly selecting values using 

rate, you can pass in your own 

dropout mask to use in the dropout layer.

• 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   216   217   218   219   220   221   222   223   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish