Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet207/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   203   204   205   206   207   208   209   210   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 Summary

In this chapter, we discussed practical use cases of anomaly detection in the business 

landscape. We showed how anomaly detection can be used to address real-life problems 

in many businesses. Every business and use case is different, so while we cannot copy/

Chapter 8   praCtiCal Use Cases of anomaly DeteCtion



318

paste code to build a successful model to detect anomalies in any dataset, this chapter 

covered many use cases to give you an idea of the possibilities and concepts behind the 

thought process.

Remember that this is an evolving field with continuous inventions and 

enhancements to the algorithms present, which means that in the future the 

algorithms will not look the same. Just couple of years ago, the RNN (recurrent neural 

network) was the best algorithm for a time series, but now the LSTM (Chapter 

6

) is 


being used heavily and the TCN (Chapter 

7

) will be the future of dealing with a time 



series. Even autoencoders have changed quite a bit; the traditional autoencoders have 

evolved into variational autoencoders (Chapter 

4

). The RBM (Chapter 



5

) is not used 

that much any longer.

In the next chapter, Appendix A, we will look at Keras, which is a popular framework 

for deep learning.

Chapter 8   praCtiCal Use Cases of anomaly DeteCtion




319

© Sridhar Alla, Suman Kalyan Adari 2019 

S. Alla and S. K. Adari, Beginning Anomaly Detection Using Python-Based Deep Learning,  

https://doi.org/10.1007/978-1-4842-5177-5




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   203   204   205   206   207   208   209   210   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish