Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet104/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   100   101   102   103   104   105   106   107   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 4-26.  Code to create the neural network

Figure 4-27.  Model graph shown in TensorBoard

Chapter 4   autoenCoders




144

 Convolutional  Autoencoders

Whenever your inputs are images, it makes sense to use convolutional neural networks 

(convnets or CNNs) as encoders and decoders. In practical settings, autoencoders 

applied to images are always convolutional autoencoders because they simply perform 

much better.

Let’s implement one. The encoder will consist in a stack of Conv2D and MaxPooling2D 

layers (max pooling is being used for spatial down-sampling), while the decoder will 

consist in a stack of Conv2D and UpSampling2D layers.

Figure 

4-28


 shows the basic code to import all necessary packages in a Jupyter 

notebook. Also note the versions of the various packages.



Figure 4-28.  Importing packages in a Juypter notebook

Chapter 4   autoenCoders




145

You will use the mnist images data set for this purpose. Mnist contains images for the 

digits 0 to 9 and is used for many different use cases. Figure 

4-29


 shows the code to load 

MNIST data.




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   100   101   102   103   104   105   106   107   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish