Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet257/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   253   254   255   256   257   258   259   260   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

IRU

HSRFK


LQ UDQJH

QXPBHSRFKV 

WUDLQ PRGHOGHYLFHWUDLQBORDGHUFULWHULRQRSWLPL]HUHSRFK

7HVWLQJSKDVH

WHVW PRGHOGHYLFHWHVWBORDGHU

Figure B-12.  Initializing the model and passing it to the GPU, defining your 

criterion function (cross entropy loss), and defining your optimizer (the Adam 

optimizer). Then, the training and testing functions are called

appendix B   intro to pytorch




374

Figure B-13.  What the code from Figures 

B-11

 and 

B-12

 should look like after 

pasting them into a Jupyter cell

appendix B   intro to pytorch




375

After the training process, you get Figure 

B-14

 and Figure 



B-15

.

Figure B-14.  The initial output of the training process



Figure B-15.  The training process has finished

Although in your Keras examples you didn’t spread apart your training and testing 

functions (since they’re just one line each), more complicated implementations of 

models involving custom layers, models, and so on can be formatted in a similar fashion 

to the PyTorch example above.

appendix B   intro to pytorch




376

Hopefully, you understand a bit more on how to implement, train, and test neural 

networks in PyTorch.

Next, we will explain some of the basic functionality that PyTorch offers in terms 

of model layers (activations included), loss functions, and optimizers, and then you’ll 

explore PyTorch applications of temporal convolutional neural networks to the data set 

found in Chapter 

7

.




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   253   254   255   256   257   258   259   260   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish