Beginning Anomaly Detection Using


lr: Some float value where the learning rate lr



Download 26,57 Mb.
Pdf ko'rish
bet243/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   239   240   241   242   243   244   245   246   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

lr: Some float value where the learning rate lr >= 0. The learning rate 

is a hyperparameter that determines how big of a step to take when 

optimizing the loss function.

• 

rho: Some float value where rho >= 0. Rho is a parameter that helps 

calculate the exponentially weighted average over the gradients squared.

• 

epsilon: Some float value where epsilon e >= 0. If None, then it 

defaults to K.epsilon(). Epsilon is a very small number that helps 

prevent division by 0 and to help prevent the gradients from blowing 

up in RMSprop.

• 

decay: Some float value where the decay d >= 0. Helps determine how 

much the learning rate decays by after each update (so that as the local 

minimum is approached, or after some number of training iterations

the learning rate decreases so smaller step sizes are taken. Big learning 

rates means the local minimum might be overshot more easily).

 Activations

You can pass in something like ‘activation_function’ for the activation parameter in a 

layer, or the full function, keras.activations.activation_function(), if you want to 

customize it more. Otherwise, the default initialized activation function is used in the layer.



 Softmax

keras.activations.softmax()

This performs a softmax activation on the input 

x and on the given axis.

The two parameters are

• 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   239   240   241   242   243   244   245   246   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish