Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet190/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   186   187   188   189   190   191   192   193   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

LPSRUW

QXPS\


DV

QS

LPSRUW

SDQGDV

DV

SG

LPSRUW

NHUDV

IURP

NHUDV


LPSRUW

UHJXODUL]HUVRSWLPL]HUV



IURP

NHUDVOD\HUV



LPSRUW

,QS XW&RQY''HQVH)ODWWHQ$FWLYDWLRQ

8S6DPSOLQJ'0D[3RROLQJ' =HUR3DGGLQJ'

IURP

NHUDVFDOOEDFNV



LPSRUW

0RGHO&KHFNSRLQW7HQVRU%RDUG



IURP

NHUDVPRGHOV



LPSRUW

0RGHOORDGBPRGHO



IURP

NHUDVXWLOV



LPSRUW

WRBFDWHJRULFDO



IURP

VNOHDUQPRGHOBVHOHFWLRQ



LPSRUW

WUDLQBWHVWBVSOLW



IURP

VNOHDUQSUHSURFHVVLQJGDWD



LPSRUW

6WDQGDUG6FDOHU



Figure 7-53.  Importing the necessary modules

Chapter 7   temporal Convolutional networks




288

And now you reshape the data sets as shown in Figure 

7-55

.

GI> $PRXQW @ 



6WDQGDUG6FDOHU ILWBWUDQVIRUP GI> $PRXQW @YDOXHVUHVKDSH 

GI> 7LPH @ 

6WDQGDUG6FDOHU ILWBWUDQVIRUP GI> 7LPH @YDOXHVUHVKDSH 

DQRPDOLHV GI>GI>&ODVV@  @

QRUPDO GI>GI>&ODVV@  @

IRU

I

LQ

UDQJH  

QRUPDO QRUPDOLORF>QSUDQGRPSHUPXWDWLRQ OHQ QRUPDO @

GDWDBVHW SGFRQFDW >QRUPDO>@DQRPDOLHV@

[BWUDLQ[BWHVW WUDLQBWHVWBVSOLW GDWDBVHWWHVWBVL]H 

UDQGRPBVWDWH 

[BWUDLQ [BWUDLQVRUWBYDOXHV E\ > 7LPH @

[BWHVW [BWHVWVRUWBYDOXHV E\ > 7LPH @

\BWUDLQ [BWUDLQ>&ODVV@

\BWHVW [BWHVW>&ODVV@

Figure 7-54.  Using the standard scaler on the columns Time and Amount, 

defining the anomaly and normal value data sets, and then defining a new data 

set to generate the training and testing sets from. Finally, these sets are sorted in 

increasing order of time

[BWUDLQ QSDUUD\ [BWUDLQ UHVKDSH [BWUDLQVKDSH>@

[BWUDLQVKDSH>@

[BWHVW QSDUUD\ [BWHVW UHVKDSH [BWHVWVKDSH>@

[BWHVWVKDSH>@

LQSXWBVKDSH  [BWUDLQVKDSH>@

\BWUDLQ NHUDVXWLOVWRBFDWHJRULFDO \BWUDLQ

\BWHVW NHUDVXWLOVWRBFDWHJRULFDO \BWHVW



Figure 7-55.  Reshaping the training and testing sets so that they correspond with 

the input shape of the model

Chapter 7   temporal Convolutional networks




289

Now that the data preprocessing is done, let’s build the model. This is the encoding 

stage (see Figure 

7-56


).

LQSXWBOD\HU ,QSXW VKDSH LQSXWBVKDSH

(1&2',1*67$*(

3DLUVRIFDXVDO'FRQYROXWLRQDOOD\HUVDQGSRROLQJOD\HUV

FRPSULVLQJWKHHQFRGLQJVWDJH

FRQYB &RQY' ILOWHUV LQW LQSXWBVKDSH>@ NHUQHOBVL]H 

GLODWLRQBUDWH 

SDGGLQJ FDXVDO VWULGHV LQSXWBVKDSH LQSXWBVKDSH

NHUQHOBUHJXODUL]HU UHJXODUL]HUVO  

DFWLYDWLRQ UHOX LQSXWBOD\HU

SRROB 0D[3RROLQJ' SRROBVL]H VWULGHV  FRQYB

FRQYB &RQY' ILOWHUV LQW LQSXWBVKDSH>@ NHUQHOBVL]H 

GLODWLRQBUDWH 

SDGGLQJ FDXVDO VWULGHV 

NHUQHOBUHJXODUL]HU UHJXODUL]HUVO  

DFWLYDWLRQ UHOX SRROB

SRROB 0D[3RROLQJ' SRROBVL]H VWULGHV  FRQYB

FRQYB &RQY' ILOWHUV LQW LQSXWBVKDSH>@ NHUQHOBVL]H 

GLODWLRQBUDWH 

SDGGLQJ FDXVDO 

VWULGHV NHUQHOBUHJXODUL]HU UHJXODUL]HUVO  

DFWLYDWLRQ UHOX SRROB

2873872)(1&2',1*67$*(

HQFRGHU 'HQVH LQW LQSXWBVKDSH>@ DFWLYDWLRQ UHOX FRQYB



Figure 7-56.  Defining the code for the encoding stage

Chapter 7   temporal Convolutional networks




290

Following that block is the code for the decoding stage (see Figure 

7-57

).

Figure 7-57.  Code to define the decoding stage and then the final layer. The model 



is then initialized

 '(&2',1*67$*(

3DLUVRIXSVDPSOLQJDQGFDXVDO'FRQYROXWLRQDOOD\HUVFRPSULVLQJ

WKHGHFRGLQJVWDJH

XSVDPSOHB 8S6DPSOLQJ' VL]H  HQFRGHU

FRQYB &RQY' ILOWHUV LQW LQSXWBVKDSH>@ NHUQHOBVL]H 

GLODWLRQBUDWH 

SDGGLQJ FDXVDO VWULGHV 

NHUQHOBUHJXODUL]HU UHJXODUL]HUVO  

DFWLYDWLRQ UHOX XSVDPSOHB

XSVDPSOHB 8S6DPSOLQJ' VL]H  FRQYB

FRQYB &RQY' ILOWHUV LQW LQSXWBVKDSH>@ NHUQHOBVL]H 

GLODWLRQBUDWH 

SDGGLQJ FDXVDO 

VWULGHV NHUQHOBUHJXODUL]HU UHJXODUL]HUVO  

DFWLYDWLRQ UHOX XSVDPSOHB

]HURBSDGB =HUR3DGGLQJ' SDGGLQJ  FRQYB

FRQYB &RQY' ILOWHUV LQW LQSXWBVKDSH>@ NHUQHOBVL]H 

GLODWLRQBUDWH 

SDGGLQJ FDXVDO 

VWULGHV NHUQHOBUHJXODUL]HU UHJXODUL]HUVO  

DFWLYDWLRQ UHOX ]HURBSDGB

2XWSXWRIGHFRGLQJVWDJHIODWWHQHGDQGSDVVHGWKURXJKVRIWPD[WR

PDNHSUHGLFWLRQV

IODW )ODWWHQ FRQYB

RXWSXWBOD\HU 'HQVH DFWLYDWLRQ VRIWPD[ IODW

7&1 0RGHO LQSXWV LQSXWBOD\HURXWSXWV RXWSXWBOD\HU

Chapter 7   temporal Convolutional networks




291

Now that the model has been defined, let’s compile it and train it (see Figure 

7-58

).

The output should look somewhat like Figure 



7-59

.

7&1FRPSLOH ORVV NHUDVORVVHVFDWHJRULFDOBFURVVHQWURS\



RSWLPL]HU RSWLPL]HUV$GDP OU  

PHWULFV >DFFXUDF\@

FKHFNSRLQWHU 0RGHO&KHFNSRLQW ILOHSDWK PRGHOB('

7&1BFUHGLWFDUGK

YHUERVH 

VDYHBEHVWBRQO\ 7UXH

7&1VXPPDU\

Figure 7-58.  Compiling the model, defining the checkpoint callback, and calling 

the summary function

Chapter 7   temporal Convolutional networks




292

Notice the addition of the zero padding layer. What this layer does is add a 0 to the 

data sequence in order to help the dimensions match. Because the original data had an 

odd number of columns, the number of dimensions in the output of the decoder stage 

did not match the dimensions of the original data after being upsampled (this is because 

of rounding issues, since everything is an integer). To counter this,

zero_pad_1 = ZeroPadding1D(padding=(0,1))(conv_5)

Figure 7-59.  The summary of the model. This can help you get an idea of how the 

encoding and decoding works by looking at the output shapes of each layer

Chapter 7   temporal Convolutional networks




293

was included, where the tuple is formatted as (left_pad, right_pad) to customize how 

the padding should be. Otherwise, passing in an integer will just pad on both ends. To 

summarize, 



zero padding will add a zero to each entry in the data to the left, right, or 

both (default) sides.

With the model compiled, all that’s left for you to do is train the data (see Figure 

7- 60


).

After a while, you should end with something like Figure 

7-61

.

TCN.fit(x_train, y_train,



batch_size=128,

epochs=25,

verbose=1,

validation_data=(x_test, y_test),

callbacks = [checkpointer])


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   186   187   188   189   190   191   192   193   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish