Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet16/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   12   13   14   15   16   17   18   19   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 Categories  of Anomalies

Now that you have some perspective of what anomalies can be in various situations, you 

can see that they generally fall into these broad categories:

•  Data point-based anomalies

•  Context-based anomalies

•  Pattern-based anomalies



Figure 1-15.  Number of pickups for a taxi company throughout the year, with a 

polar vortex hitting the city in April

Chapter 1   What Is anomaly DeteCtIon?




16

 Data Point-Based Anomalies

Data point-based anomalies can seem comparable to outliers in a set of data points. 

However, anomalies and outliers are not the same thing. 

Outliers are data points that are 

expected to be present in the data set and can be caused by unavoidable random errors 

or from systematic errors relating to how the data was sampled. 

Anomalies are outliers 

or other values that one doesn’t expect to exist. These types of anomalies can be found 

wherever a data set of values exists.

An example of this is a data set of thyroid diagnostic values, where the majority of 

the data points are indicative of normal thyroid functionality. In this case, anomalous 

values represent sick thyroids. While they are not necessarily outliers, they have a low 

probability of existing when taking into account all the normal data.

You can also detect individual purchases totaling to excessive amounts and label 

them as anomalies since, by definition, they are not expected to occur or have a very low 

probability of occurrence. In this case, they are labeled as fraud transactions, and the 

card holder is contacted to ensure the validity of the purchase.

Basically, you can say this about the difference between anomalies and outliers: you 

should expect there to be outliers in a set of data, but not anomalies.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   12   13   14   15   16   17   18   19   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish