Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet11/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   7   8   9   10   11   12   13   14   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 Anomalies as Data Points

Let’s extend this same concept to a real-world application. In the following example, 

you will take a look a factory that produces screws and attempt to determine what an 

anomaly could be in this context. The factory produces massive batches of screws all 

at once, and samples from each batch are tested to ensure that a certain level of quality 

is maintained. For each sample, assume that the density and tensile strength (how 

resistant the screw is to breaking under stress) is measured.

Figure 


1-4

 is an example graph of various sample batches with the dotted lines 

representing the range of densities and tensile strengths allowed.

Figure 1-4.  Density and tensile strength in sample batches of screws

Chapter 1   What Is anomaly DeteCtIon?




6

The intersections of the dotted lines create several different regions containing data 

points. Of interest is the bounding box (solid lines) created from the intersection of both 

dotted lines since it contains the data points for samples deemed acceptable (Figure 

1- 5

). 


Any data point outside of that specific box will be considered anomalous.

Now that you know what points are and aren’t acceptable, let’s pick out a sample 

from a new batch of screws and check its data to see where it falls on the graph  

(Figure 


1- 6

).

Figure 1-5.  Data points are identified as good or anomaly based on their 



location

Chapter 1   What Is anomaly DeteCtIon?




7

The data for this sample screw falls within the acceptable range. That means that this 

batch of screws is good to use since its density and tensile strength are appropriate for 

use by the consumer. Now let’s look at a sample from the next batch of screws and check 

its data (Figure 

1-7


).

Figure 1-6.  A new data point representing the new sample screw is generated, 

with the data falling within the bounding box

Chapter 1   What Is anomaly DeteCtIon?




8

The data falls far outside the acceptable range. For its density, the screw has abysmal 

tensile strength and is unfit for use. Since it has been flagged as an anomaly, the factory 

can investigate the reasons for why this batch of screws turned out to be brittle. For a 

factory of considerable size, it is important to hold a high standard of quality as well 

as maintain a high volume of steady output to keep up with consumer demand. For a 

monumental task like that, automation to detect any anomalies to avoid sending out 

faulty screws is essential and has the benefit of being extremely scalable.

So far, you have explored anomalies as data points that are either out of place, in the 

case of the black swan, or unwanted, in the case of faulty screws. So what happens when 

you introduce time as a new variable?

Figure 1-7.  A new data point is generated for another sample, but it falls outside 

the bounding box

Chapter 1   What Is anomaly DeteCtIon?




9


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   7   8   9   10   11   12   13   14   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish