Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet145/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   141   142   143   144   145   146   147   148   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 What Is an LSTM?

A LSTM network is a kind of recurrent neural network. As seen above, a recurrent 

neural network is a neural network that attempts to model time or sequence dependent 

behavior, such as language, stock prices, weather sensors, and so on. This is performed 

by feeding back the output of a neural network layer at time T to the input of the 

same network layer at time T + 1. LSTM builds on top of the RNN, adding a memory 

component meant to help propagate the information learned at a time T to the future 

T+1, T+2, and so on. The main idea is that LSTM can forget irrelevant parts of previous 

state while selectively updating state and then outputting certain parts of the state that 

are relevant to the future.

How does this solve the vanishing gradient problem in RNNs? Well, now we are 

throwing some state, updating some state, and propagating forward some part of the 

state so we no longer have a long chain of backpropagation seen in RNNs. Thus, LSTMs 

are much more efficient than typical RNN.

Chapter 6   Long Short-term memory modeLS 



219

Figure 


6-7

 is a RNN with tanh activation.

The tanh function is called an activation function. There are several types of 

activation functions that help in applying non-linear transformations on the inputs at 

every node in the neural network. Figure 

6-8


 shows common activation functions.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   141   142   143   144   145   146   147   148   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish