𝐎
’
𝐳𝐛𝐞𝐤𝐢𝐬𝐭𝐨𝐧
𝐌𝐚𝐭𝐞𝐦𝐚𝐭𝐢𝐤𝐥𝐚𝐫𝐢
𝐯𝐚
𝐈𝐧𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐤𝐚
𝐀𝐬𝐬𝐨𝐭𝐬𝐢𝐚𝐭𝐬𝐢𝐲𝐚𝐬𝐢
HTTPS://T.ME/UZMIA31
1
𝑼𝒁𝑴𝑰𝑨
𝒕𝒆𝒔𝒕_𝟐
1.
Hisoblang:
∫ 𝑥 ∙ ln(𝑥 + 1)𝑑𝑥
0
−1
𝐴)
1
2
𝐵)
1
4
𝐶)
3
4
𝐷)
3
2
2.
Agar
(1 + 𝑥 + 𝑥
2
+ 𝑥
3
)
100
= ∑
𝑎
𝑟
∙ 𝑥
𝑟
300
𝑟=0
hamda
∑
𝑎
𝑟
300
𝑟=0
= 𝑘
bo’lsa,
∑
𝑟 ∙ 𝑎
𝑟
300
𝑟=0
ni toping?
𝐴) 75𝑘 𝐵) 100𝑘 𝐶) 150𝑘 𝐷) 300𝑘
3.
𝐴 = {1,2,3,4,5,6} va 𝐵 = {7,8,9,10} da 𝑓: 𝐴 → 𝐵,
uchun
𝑓(1) + 𝑓(2) + 𝑓(3) + 𝑓(4) + 𝑓(5) + 𝑓(6)
yig’indining qiymati toq bo’ladigan barcha bunday
funksiyalar soni
2
𝑛
ta bo’lsa,
𝑛
ni toping?
𝐴) 5 𝐵) 6 𝐶) 9 𝐷) 11
4.
Agar
𝑓(𝑥) = { (sin
2𝑥
2
𝑎
+ cos
3𝑥
𝑏
)
𝑎𝑏
𝑥2
𝑒
2𝑥+3
, 𝑥 = 0
, 𝑥 ≠ 0
hamda
∀𝑏 ∈ 𝑅,
𝑥 = 0
da usliksiz funksiya.
|
1
𝑎
𝑚𝑖𝑛
|
ni toping?
𝐴) 2 𝐵) 3 𝐶) 4 𝐷) 6
5.
𝑥
2
− 𝑦
2
= 𝑎
2
tenglama bilan berilgan giperbolada
olingan
𝑜𝑥
o’qiga
simmetrik joylashgan ikkita
𝐴 va 𝐵
nuqtalar hamda
𝐶(−𝑎; 0)
nuqta orqali hosil
bo’lgan tomoni uzunligi
𝑘 ∙ 𝑎
ga teng bo’lgan
muntazam uchburchak qurilgan bo’lsa,
𝑘
ning
qiymatini toping?
𝐴) 2 𝐵) 2√3 𝐶)
2
√3
𝐷) √3
6.
10 xonali son 2 raqami
bilan boshlanadi hamda
barcha raqamlari tub sonlardan iborat. Bu soning
ixtiyoriy ikkita ketma-ket raqamlari yig’indisi tub
son bo’lish ehtimolligini toping?
𝐴)
1
2
10
𝐵)
1
2
13
𝐶)
1
2
15
𝐷)
1
2
11
7.
Agar
𝑓(𝑥) = sin 𝑥
va
𝑔(𝑥) = 𝑓 (𝑓(𝑓 … 𝑓(𝑥)))
⏟
2020 𝑡𝑎
berilgan bo’lsa,
𝑔
′
(0) + 𝑔
′′
(0) + 𝑔
′′′
(0)
ning
qiymatini toping?
𝐴) 0 𝐵) − 2019 𝐶) − 2020 𝐷) 1
8.
𝑦 = 𝑥 − 𝑎𝑥
2
va
𝑦 =
𝑥
2
𝑏
chiziqlar
bilan
chegaralangan sohaning
yuza qiymati eng katta
bo’ladigan
𝑏
ning qiymatini toping?
𝐴) 1 𝐵) 2 𝐶)
1
3
𝐷) 3
9.
𝑟⃗(𝑛; 𝑚)
vektor uchun
𝑟⃗(𝑟⃗ + 8𝑖 − 10𝑗) + 41 = 0
o’rinli bo’lsa,
|𝑟⃗ + 2𝑖 − 3𝑗|
2
ni toping?
𝐴) 2 𝐵) 4
𝐶) 8 𝐷) 16
10.
Hisoblang:
lim
𝑥→
𝜋
2
√
tg 𝑥 − sin(arctg(tg 𝑥)
tg 𝑥 + cos
2
(tg 𝑥)
𝐴) 0 𝐵) 1 𝐶) √2 𝐷) 𝑚𝑎𝑣𝑗𝑢𝑑 𝑒𝑚𝑎𝑠
11.
Quyidagi tenglik o’rinli bo’lsa,
𝑥 + 𝑦
ning eng
kichik qiymatini toping?
arctg(5 + 2 sin 𝑥 − sin
2
𝑥) + arctg (1 + 5
1
cos2 𝑦
) =
𝜋
2
𝐴)
𝜋
2
𝐵) 𝜋 𝐶)
3𝜋
2
𝐷) 0
12.
Quyidagi tenglama
kamida bitta yechimga ega
bo’ladigan barcha
𝑥 ∙ cos 𝜑
larning
qiymatlari
yig’inidisini toping?
4 cos
2
𝜑 =
𝑥
4
+ 2𝑥
2
+ 5
𝑥
2
+ 1
𝐴) 0 𝐵) 1 𝐶) 2 𝐷) 4
13.
𝛼 va 𝛽
ildizlar
𝑥
2
− 6𝑥 + 12 = 0
tenglamaning
ildizlari. Agar
(𝛼 − 2)
12
+
(𝛽−6)
12
𝛼
12
− 1 = 𝑎
𝑏
bo’lsa,
𝑎 + 𝑏
ning eng kichik qiymatini toping?
𝐴) 8 𝐵) 10 𝐶) 12 𝐷) 14
14.
𝐴 = [
−1 3
2
0
1
4
−2 3
2
]
matritsa uchun quyidagi o’rinli,
𝐴
−1
=
1
10
(𝑘𝐴 + 9𝐼 − 𝐴
2
)
𝑘
ni toping?
𝐴) − 10 𝐵) 10 𝐶) − 2 𝐷) 2
15.
Kafeda 4 ta doira shaklidagi 4 tadan stulli stollar
bor. Azolari soni 7 va 8 kishidan iborat bo’lgan 2
ta oila kafega keldi. Bu to’rtta doira stollarda necha
xil usulda o’tirishlari mumkin?
(bir oila azosi boshqa oila bilan o’tirmaydi)
𝐴)
(7!)
2
4
𝐵)
(8!)
2
16
𝐶)
(7!)
2
16
𝐷) (8!)
2
16.
Quyidagi funksiya monoton emas,
𝛼
ni toping?
𝑓(𝑥) = 2𝑥
3
− (6√2 sin
2
𝛼) ∙ 𝑥
2
+ (6 sin
2
𝛼)𝑥 + 2
𝐴) (
𝜋
4
+ 2𝜋𝑛;
3𝜋
4
+ 2𝜋𝑛) , 𝑛 ∈ 𝑍
𝐵) (
𝜋
4
+ 𝜋𝑛;
3𝜋
4
+ 𝜋𝑛) , 𝑛 ∈ 𝑍
𝐶) (
𝜋
4
+ 2𝜋𝑛;
3𝜋
4
+ 2𝜋𝑛) ∪ {𝜋𝑛}, 𝑛 ∈ 𝑍
𝐷) (
𝜋
4
+ 𝜋𝑛;
3𝜋
4
+ 𝜋𝑛) ∪ {𝜋𝑛}, 𝑛 ∈ 𝑍
17.
𝑓: 𝑅 → 𝑅
da
∀𝑥 ∈ 𝑅 da
𝑓(3 − 𝑥) = 𝑓(3 + 𝑥)
va
𝑓(6 − 𝑥) = 𝑓(6 + 𝑥)
. Agar
∫ 𝑓(𝑥)𝑑𝑥 = 5
3
0
bo’lsa
∫ 𝑓(𝑥)
45
15
𝑑𝑥
ni toping?
𝐴) 25 𝐵) 30 𝐶) 50 𝐷) 60
18.
6 ta o’g’il bola va 7 ta
qiz boladan iborat alochi
o’quvchilar orasidan 5 ta olimpiadaga tayyorlanish
jamoasini, jamoada kamida bitta qiz bo’lish sharti
bilan, necha xil usulda tuzish mumkin?
𝐴) 𝐶
13
4
𝐵) 7 ∙ 𝐶
6
4
𝐶) 𝐶
13
5
− 𝐶
6
5
𝐷) 𝐶
13
5
+ 𝐶
6
5
19.
2 dan oshmaydigan ikkita ixtiyoriy musbat
𝑥 va 𝑦
sonlari olindi.
𝑥𝑦 ≤ 1 va
𝑦
𝑥
≤ 2
shartlarni o’rinli
bo’lish ehtimolligini toping?
𝐴)
3
2
ln 2 𝐵)
3 ln 2+1
4
𝐶)
3 ln 2+1
8
𝐷) 𝑡. 𝑗. 𝑦
𝐎
’
𝐳𝐛𝐞𝐤𝐢𝐬𝐭𝐨𝐧
𝐌𝐚𝐭𝐞𝐦𝐚𝐭𝐢𝐤𝐥𝐚𝐫𝐢
𝐯𝐚
𝐈𝐧𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐤𝐚
𝐀𝐬𝐬𝐨𝐭𝐬𝐢𝐚𝐭𝐬𝐢𝐲𝐚𝐬𝐢
HTTPS://T.ME/UZMIA31
2
20.
Uchlari
(2; 3; 4) va (6; 7; 8)
nuqtalarda bo’lgan
kesmaga perpendikulyar va bu kesmani teng ikkiga
bo’ladigan tekislik tenglamasini tuzing?
𝐴) 𝑥 + 𝑦 + 𝑧 − 15 = 0
𝐵) 𝑥 + 𝑦 + 𝑧 + 15 = 0
𝐶) 𝑥 − 𝑦 + 𝑧 − 15 = 0
𝐷) 𝑡. 𝑗. 𝑦
21.
𝑧
1
va
𝑧
2
kopleks sonlari
uchun quyidagi tenglik
qaysi javobga teng:
|
𝑧
1
+ 𝑧
2
2
+ √𝑧
1
𝑧
2
| + |
𝑧
1
+ 𝑧
2
2
− √𝑧
1
𝑧
2
|
𝐴) 2|√𝑧
1
+ √𝑧
2
| 𝐵) 2|√𝑧
1
− √𝑧
2
|
𝐶) 2(|√𝑧
1
|
2
+ |√𝑧
2
|
2
) 𝐷) |√𝑧
1
|
2
+ |√𝑧
2
|
2
22.
𝑥
4
− 2𝑥
3
− 2𝑥
2
+ 4𝑥 + 3 = 0
tenglamaning
ildizlari
𝛼, 𝛽, 𝛾, 𝛿
bo’lsa, quyidagi ifodaning
qiymatini toping?
(1 + 𝛼
2
)(1 + 𝛽
2
)(1 + 𝛾
2
)(1 + 𝛿
2
)
𝐴) 8 𝐵) 6 𝐶) 2 𝐷) 4
23.
𝑓: 𝑅 → 𝑅 da 𝑓(𝑥) = 𝑥
3
+ 3
va
𝑔: 𝑅 → 𝑅
da
𝑔(𝑥) = 2𝑥 + 1
bo’lsa,
𝑓
−1
(𝑔
−1
(23))
ni toping?
𝐴) 2 𝐵) 3 𝐶) 14
1
3
𝐷) 15
1
3
24.
Hisoblang:
𝐶
50
5
− 𝐶
5
1
𝐶
40
5
+ 𝐶
5
2
𝐶
30
5
− 𝐶
5
3
𝐶
20
5
+ 𝐶
5
4
𝐶
10
5
𝐴) 0 𝐵) 10
5
𝐶) − 10
5
𝐷) 5
5
25.
𝑜𝑧
o’qi va
𝑥−2
3
=
𝑦−5
2
=
𝑧+1
−5
to’g’ri chiziq orasidagi
eng yaqin masofani toping?
𝐴)
11
√13
𝐵)
17
√13
𝐶)
11
13
𝐷)
√11
13
26.
Hisoblang:
lim
𝑥→0
∑
(𝑥 + 𝑟)
2010
10
𝑟=1
(𝑥
1006
+ 1)(2𝑥
1004
+ 1)
𝐴)
1
2
𝐵) 1 𝐶) 5 𝐷) 1005
27.
Hosilasi mavjud bo’lgan
𝑓
da,
𝑓(0) = 𝑓(1) = 0
va
𝑓
′
(1) = 2
va
ℎ(𝑥) = 𝑓(𝑒
𝑥
) ∙ 𝑒
𝑓(𝑥)
bo’lsa,
ℎ
′
(0)
ni
toping?
𝐴) 0 𝐵) 1 𝐶) 2 𝐷) 𝑡. 𝑗. 𝑦
28.
Hisoblang:
∑ 𝑖
𝑛!
100
𝑛=0
[𝑏𝑢 𝑦𝑒𝑟𝑑𝑎 𝑖 = √−1 ]
𝐴) − 1 𝐵) 𝑖 𝐶) 2𝑖 + 95 𝐷) 97 + 𝑖
29.
𝑓(𝑥) = ∫
1
(𝑓(𝑡))
2
𝑥
0
𝑑𝑡
va
∫
1
(𝑓(𝑡))
2
𝑑𝑡 = √6
3
2
0
bo’lsa,
𝑓(9)
ni toping?
𝐴) 0 𝐵) 1 𝐶) 2 𝐷) 3
30.
𝑓(𝑥)
hosilasi
mavjud funksiya uchun,
𝑓(1) = −2
va
∀𝑥 ∈ [1; 6]
da
𝑓
′
(𝑥) ≥ 2
bo’lsa to’g’ri tasdiqni
toping?
𝐴) 𝑓(6) < 8 𝐵) 𝑓(6) ≥ 8
𝐶) 𝑓(6) ≥ 5 𝐷) 𝑓(6) ≤ 5
31.
∫ 𝑓(2𝑎 − 𝑥)𝑑𝑥 = 4
𝑎
0
va ∫ 𝑓(𝑥)𝑑𝑥 = 2
𝑎
0
bo’lsa,
∫
𝑓(𝑥)
2𝑥
0
𝑑𝑥
ni toping?
𝐴) 2 𝐵) 4 𝐶) 6 𝐷) 8
32.
(1; −5; 9)
nuqtadan
𝑥 = 𝑦 = 𝑧
chiziqga parallel
ravishda
𝑥 − 𝑦 + 𝑧 = 5
teksilikgacha bo’lgan
masofani toping?
𝐴)
20
3
𝐵) 3√10 𝐶) 10√3 𝐷)
10
√3
33.
Agar
𝑥
2
+ 4𝑦
2
− 4 = 0
bo’lsa,
𝑥
2
− 𝑥𝑦
ning eng
katta qiymatini toping?
𝐴) √5 𝐵) 2 + √5 𝐶) 2√5 + 4 𝐷) 2√5 − 1
34.
Agar
𝛼 + 𝛽 + 𝛾 = 𝜋
bo’lsa, quyidagini hisoblang:
|
sin(𝛼 + 𝑏 + 𝛾)
sin 𝛽
cos 𝛾
− sin 𝛼
0
tg 𝛼
cos(𝛼 + 𝛽)
− tg 𝛼
0
|
𝐴) 0
𝐵) 1
𝐶) 2
𝐷) 2 ∙ sin 𝛽 ∙ cos 𝛾 ∙ tg 𝛼
35.
Quyidagi tenglamalar
sistemasi yechimga ega
bo’ladigan
𝑏
qaysi oraliqda?
{
𝑥 + 2𝑦 + 2𝑧 = 1
𝑥 − 𝑦 + 3𝑧 = 3
𝑥 + 11𝑦 − 𝑧 = 𝑏
𝐴) (−7; −4) 𝐵) (−4; 0) 𝐶) (0; 3) 𝐷) (3; 6)
36.
𝑎𝑥
2
+ 𝑏𝑥 + 𝑐 = 0 va 𝑥
3
+ 6𝑥
2
+ 12𝑥 + 9 = 0
tenglamalar ikkita umumiy ildizga ega bo’lsa,
𝑎, 𝑏, 𝑐 ∈ 𝑅
da quyidagi qaysi tasdiq to’g’ri?
𝐴) 𝑎 = 3𝑏 = 3𝑐 𝐵) 𝑎 = 𝑏 = 𝑐
𝐶) 𝑎 = −3𝑏 = 𝑐 𝐷) 3𝑎 = 𝑏 = 𝑐
37.
𝑓(𝑥)
funksiya uchun,
𝑥 ∈ [0; 1] da 𝑓
′′
(𝑥) > 0
bo’lsa quyidagi tasdiqlardan qaysi biri to’g’ri?
𝐴) 𝑓(0) + 𝑓(1) = 4𝑓(𝑐) 𝑏𝑢𝑛𝑑𝑎 𝑐 ∈ (0; 1);
𝐵) 𝑓(0) + 𝑓(1) = 2𝑓 (
1
2
) ;
𝐶) 𝑓(0) + 𝑓(1) > 2𝑓 (
1
2
) ;
𝐷) 𝑓(0) + 𝑓(1) < 2𝑓 (
1
2
) ;
38.
Agar
∫
(√𝑥)
5
(√𝑥)
7
+𝑥
6
𝑑𝑥 = 𝑎 ln (
𝑥
𝑘
𝑥
𝑘
+1
) + 𝑐
bo’lsa,
𝑎 va 𝑘
ni toping?
𝐴)
5
2
va
2
5
𝐵)
2
5
va
5
2
𝐶)
5
2
va 2 𝐷) 𝑡. 𝑗. 𝑦
39.
Berilgan
𝑓 (𝑥 +
1
2
) = 𝑓 (𝑥 −
1
2
) va 𝑓 (−
1
2
) =
3
2
.
Agar
𝑛 ∈ 𝑁 da 𝑔(𝑥) = ∫ 𝑓(𝑡 + 𝑛)𝑑𝑡
𝑥
0
berilgan,
𝑔
′
(
5
2
)
ni toping?
𝐴)
1
2
𝐵)
3
2
𝐶)
5
2
𝐷) 𝑡. 𝑗. 𝑦
40.
𝐴(3; 4) va 𝐵(1; 2)
nuqtalar berilgan.
𝑃
nuqta esa
𝑥 + 2𝑦 + 5 = 0
to’g’ri chiziqda shunday olinganki
bunda
|𝑃𝐴 − 𝑃𝐵|
eng kichik qiymatga ega bo’ladi.
𝑃
nuqtani toping?
𝐴) (−
7
3
; −
4
3
) 𝐵) (−5; 0)
𝐶) (−
9
13
; −
28
13
)
𝐷) (15; −10)