Атомно-молекулярное учение и его законы


Периодическая система элементов Д. И. Менделеева



Download 1,44 Mb.
bet37/70
Sana06.07.2022
Hajmi1,44 Mb.
#744631
TuriЗакон
1   ...   33   34   35   36   37   38   39   40   ...   70
Bog'liq
referatbank-54704

Периодическая система элементов Д. И. Менделеева.

Современная периодическая система элементов имеет семь периодов, из которых I, II и III называются малыми периодами, а IV, V, VI и VI — большими периодами. I, II и III периоды содержат по одному ряду элементов, IV, V и VI — по два ряда, VII период незаконченный. Все периоды, за исключением I, содержащего лишь два элемента, начинаются щелочным металлом и заканчиваются благородным газом.


В больших периодах изменение свойств при переходе от активного металла к благородному газу происходит более плавно, чем в малых периодах. Большие периоды состоят из чётных и нечётных рядов. В этих периодах наблюдается двойная периодичность: помимо характерного для всех периодов изменения свойств от щелочного металла до благородного газа наблюдается также изменение свойств в пределах чётного ряда и отдельно — в пределах нечётного ряда. Например, в чётном ряду IV периода валентность изменяется от 1 у калия до 7 у марганца; после триады железо – кобальт – никель происходит такое же изменение валентности в нечётном ряду: от 1 у меди до 7 у брома. Подобная двойная периодичность наблюдается и в других больших периодах.
У элементов чётных рядов преобладают металлические свойства, и их ослабление справа налево замедленно. В нечётных рядах происходит заметное ослабление металлических свойств и усиление неметаллических.
Особое положение в периодической системе занимают элемент номер 57 — лантан — и следующие за ним 14 элементов, объединённых под названием лантаноиды. Эти элементы по химическим свойствам похожи на лантан и очень сходны между собой. Поэтому в периодической системе лантану и лантаноидам отведена одна клетка. Аналогичным образом в одну клетку VII периода помещены элемент номер 89 — актиний — и следующие за ним 14 элементов — так называемые актиноиды. Элементы II и III периодов Менделеев назвал типическими. Подгруппы, содержащие типические элементы, называются главными. Элементы чётных рядов (для I и II групп — нечётных) составляют побочные подгруппы.
Элементы главных подгрупп по химическим свойствам значительно отличаются от элементов побочных подгрупп. Особенно наглядно это различие в VII и VIII группах периодической системы элементов. Например, главную подгруппу в VIII группе составляют благородные газы He, Ne, Ar, Kr, Xe, Rn, а побочная подгруппа представлена триадами элементов: Fe, Co, Ni — в IV периоде, Ru, Rh, Pd — в V периоде, Os, Ir, Pt — в VI периоде. В отличие от благородных газов названные элементы имеют ярко выраженные металлические свойства.
Номер группы, как правило, показывает высшую валентность элемента по кислороду. Ряд исключений существует для элементов подгруппы меди, VII и VIII групп. Так, медь, серебро и золото образуют соединения, в которых валентность этих элементов достигает 3. Элемент VII группы — фтор — имеет только валентность 1, а высшая валентность других элементов по кислороду равна 7. В VIII группе валентность 8 проявляют только осмий, рутений и ксенон.
Элементы главных подгрупп характеризуются также валентностью по водороду. Летучие водородные соединения образуют элементы IV, V, VI и VII групп. Валентность по водороду при переходе от элементов IV группы к элементам VII группы уменьшается от 4 до 1. Напротив, валентность этих элементов по кислороду в том же направлении возрастает от 4 до 7.
Г л а в а ХI. ТРЕТЬЯ ГРУППА ПЕРИОДИЧЕСКОЙ
СИСТЕМЫ ЭЛЕМЕНТОВ
83. Общая харамтеристика элементов III группы
К III группе относятся бор, алюминий, галлий, индии, таллий (главная подгруппа), а также скандий, иттрий, лантан и лантаноиды, актиний и актиноиды (побочная подгруппа).
На внешнем электронном уровне элементов главной подгруппы имеется по три электрона (s2р1). Они легко отдают эти электроны или образуют три неспаренных электрона за счет перехода одного электрона на р-уровень. Для бора и алюминия хярактерны соединения только со степенью окисления +3. У элементов подгруппы галлия (галлий, индий, таллий) на внешнем электронном уровне также находится по три электрона, образуя конфигурацию s2р1, но они расположены после 18-электронного слоя. Поэтому в отличие от алюминия галлий обладает явно неметаллическими свойствами. Эти свойства в ряду Gа, In, Тl ослабевают, а металлические свойства усиливаются.
У элементов подгруппы скандия на внешнем электронном уровне также находится по три электрона. Однако эти элементы относятся к переходным d-элементам, электронная конфигурация их валентного слоя d1s2. Эти электроны все три элемента довольно легко отдают. Элементы подгруппы лантаноидов имеют отличительную конфигурацию внешнего электронного уровня: у них застраиваетси 4f -уровень и исчезает d-уровень. Начиная с церия все элементы, кроме гадолиния и лютеция, имеют электронную конфигурацию внешнего электронного уровня 4fn6s2 (гадолиний и лютеций имеют 5d1-электроны). Число n изменяется от 2 до 14. Поэтому в образовании валентных связей принимают участие s- и f-электроны. Чаще всего степень окисления лантаноидов +3, реже +4.
Электронное строение валентного слоя актиноидов во многом напоминает электронное строение валентного слоя лантаноидов. Все лантаноиды и актиноиды — типичные металлы.
Все элементы III группы обладают очень сильным сродством к кислороду, и образование их оксидов сопровождается выделением большого количества теплоты.
Элементы III группы находят самое разнообразное применение.
Бор был открыт Ж. Гей-Люссаком и Л. Тенаром в 1808 г. Содержание его в земной коре составляет 1,2·103 %.
Соединения бора с металлами (б о р и д ы ) обладают высокой твердостью и термостойкостью. Поэтому их используют для получения сверхтвердых и жаропрочных специальных сплавов. Большой термостойкостью обладают карбид и нитрид бора. Последний применяют в качестве высокотемпературной смазки. Кристаллогидрат тетрабората натрия Nа2В4O7·10Н2О (бура) имеет постоянный состав, его растворы применяют в аналитической химии для установления концентрации растворов кислот. Реакция буры с кислотой протекает по уравнению
2В4O7 + 2 НСl + 5 Н2О = 2 NаСl + 4 Н3ВО3
Содержание галлия в земной коре составляет 1,9·103 %. Он был предсказан Д. И. Менделеевым (экаалюминий) и открыт французским химиком Р. Э. Лекок де Буабодраном в 1875 г. Свойства галлия почти полностью совпали со свойствами экаалюминия, предсказанными Д, И. Менделеевым на основе периодического закона.
Соединения галлия с элементами VI группы (серой, селеном, теллуром) являются полупроводниками. Жидким галлием наполняют высокотемпературные термометры.
Индий был открыт Т. Рихтером и Ф. Райхом в 1863 г. Содержание его в земной хоре составляет 2,5·105 %. Добавка индия к сплавам меди увеличивает устойчивость последних к действию морской воды. Присадка этого металла к серебру увеличивает блеск серебра и препятствует его тускнению на воздухе. Индиевые покрытия предохраняют металлы от коррозии. Он входит в состав некоторых сплавов, применяющихся в стоматологии, а также некоторых легкоплавких сплавов (сплав индия, висмута, свинца, олова и кадмия плавится при 47 С). Соединения индия с различными неметаллами обладают полупроводниковыми свойствами.
Таллий был открыт У. Круксом в 1861 г. Содержание его в земной коре составляет 104 %. Сплав таллия (10 %) с оловом (20 %) и свинцом (70 %) обладает очень высокой кислотоупорностью, он выдерживает действие смеси серной, соляной и азотной кислот. Таллий повышает чувствительность фотоэлементов к инфракрасному излучению, исходящему от нагретых предметов. Соединения таллия весьма ядовиты и вызывают выпадение волос.
Галлий, индий и таллий относятся к рассеянным элементам. Содержание их в рудах, как правило, не превышает тысячных долей процента.
Соединения скандия, иттрия, лантана и лантаноидов были известны еще в начале Х1Х в. Чистый скандий был выделен Л. Ф. Нильсоном в 1879 г. Содержание этого элемента в земной коре составляет 103 %. Иттрий был открыт Ю. Гадолином в 1794 г. Его содержание в земной коре составляет 2,9·103 %. Содержание в земной коре лантана, открытого К. Г. Мосандером в 1839 г., составляет 4,9·103 %. Применяются эти металлы в основном для получения специальных сплавов, обладающих специфическими электрическими и магнитными свойствами. Кроме того, лантаноиды используются для приготовления различных пирофорных составов, церий — для получения алюминиевых сплавов. Добавка церия увеличивает электропроводность алюминия и улучшает его механические свойства, облегчает прокатку вольфрама. Диоксид церия применяется при шлифовке оптического стекла.
К семейству актиноидов относятся наиболее тяжелые элементы, следующие в периодической системе за актинием.
Из актиноидов практическое применение находят уран, торий
и плутоний.
Уран был открыт М. Г. Клапротом в 1789. Содержание его в земной коре составляет 2,5·104 %. В природе уран встречается н виде трех изотопов: 238U — 99,285 %, 235U — 0,71 %, 234U — 0,005 %. Изотоп 235U способен самопроизвольно распадаться, Поэтому уран, используемый в реакторах в качестве ядерного горючего, обогащают с целью увеличения в нем содержания изотопа-235. Для этого изотопа существует понятие критической массы, при достижении которой начинается цепная реакция и происходит ядерный взрыв. Если масса 235U меньше критической, скорость реакции самопроизвольного распада можно регулировать. Это свойство 235U используется в ядерном реакторе. Соединения урана применяются также в качестве красителей в полиграфической и силикатной промышленности.
Диоксид тория был открыт Й. Я. Берцелиусом в 1828 г., но металлический торий получен сравнительно недавно. Содержание тория в земной коре составляет 1,3·103 %. Небольшие добавки этого металла к вольфраму увеличивают срок службы электроспиралей в лампах накаливания (торий поглощает газы, способствующие быстрому износу вольфрамовой нити). Диоксид тория применяется в медицине, а также при изготовлении некоторых катализаторов.
Плутоний был открыт Г. Сиборгом, Э. Макмилланом, Дж. Кеннеди и А. Валем в 1940 г. Содержание его в земной коре ничтожно. Получают плутоний из продуктов распада горючего ядерных реакторов. Используется он для тех же целей, что и уран235.

Download 1,44 Mb.

Do'stlaringiz bilan baham:
1   ...   33   34   35   36   37   38   39   40   ...   70




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish