Halqa va uning ta’rifi.
Bo‘sh bo‘lmagan A to‘plamda ikkita binar algebraik operatsiya berilgan bo‘lsin. Aniqlik uchun binar algebraik operatsiyalar uchun «qo‘shish» va «ko‘paytirish» amallarini qabul qilaylik.
4-ta’rif. Bo‘sh bo‘lmagan A to‘plamda qo‘shish va ko‘paytirish binar algebraik operatsiyalari berilgan bo‘lib, ular quyidagi xossalarga bo‘ysunsalar, A to‘plam va amallari bilan berilgan ‹A, +,·› algebra yarim halqa deyiladi:
a) a,b,cA uchun (a+b)+c=a+(b+c), ya’ni assotsiativlik xossasi;
b) a,b,cA uchun a+b=b+a, ya’ni kommutativlik xossasi;
d) a,b,xA uchun
a+x=b+xa=b
x+a=x+ba=b;
ya’ni qisqaruvchanlik xossasi;
e) a,b,cA uchun (a·b)·c=a·(b·c) ko‘paytirish amali assotsiativlik xossasiga bo‘ysinsa;
f) a,b,cA uchun (a+b)·c=a·c+b·c yoki c·(a+b)=c·a+c·b ko‘paytirish amali qoshish amaliga nisbatan distributivlik xossasiga ega bo‘lsa.
Agar ‹A,+,·› yarim halqa bo‘lib, ko‘paytirish amali kommutativ bo‘lsa, bunday yarim halqa yarim kommutativ halqa deyiladi.
5-ta’rif. Agar ‹A,+,·› algebra qo‘shish amaliga nisbatan Abel gruppa va ko‘paytirish amali qo‘shish amaliga nisbatan distributivlik xossasiga bo‘ysunsa, ‹A,+,·› algebraga halqa deyiladi.
Demak, ‹A,*,º› halqa bo‘lishi uchun, A to‘plamda * algebraik operatsiya assotsiativ va kommutativ bo‘lishi, * algebraik operatsiyaga nisbatan neytral va simmetrik elementlari mavjud bo‘lishi hamda ◦ algebraik operatsiya * algebraik operatsiyaga nisbatan distributiv bo‘lishi kerak.
Agar aA uchun a+0=a va 0+a=a munosabat o‘rinli bo‘lsa, 0A element A to‘plamning nol elementi, agar aA uchun eA mavjud bo‘lib, a·e=e·a=a munosabat bajarilsa, e elementga A to‘plamning birlik elementi deyiladi.
Misol. N={1,2,3,…,n,…} natural sonlar to‘plamida qo‘shish va ko‘paytirish amallari vositasida tashkil qilingan ‹N,+,·› algebra yarim halqadir. Haqiqatan ham,
1) 4,6,7N 4+(6+7)=(4+6)+7
2) 4+7=7+4
3) 5+12=5+(5+7)12=5+7
4) 5·(6·7)=(5·6)·7
5) 6·(7+4)=6·7+6·4
6·7+6·4=42+24=66
Demak, ‹N,+,·› algebra yarim halqadir.
Agar A to‘plamda berilgan ko‘paytirish amali uchun kommutativlik xossasi o‘rinli bo‘lsa, ‹A,+,·› kommutativ halqa, agar ko‘paytirish amali uchun assotsiativlik xossasi o‘rinli bo‘lsa, ‹A,+,·› assotsiativ halqa, agar ko‘paytirish amaliga nisbatan a·e=e·a=a shartni bajaruvchi neytral element mavjud bo‘lsa, ‹A,+,·› birlik elementli halqa (chunki a·1=1·a=a,e=1) deb yuritiladi.
Agar ‹A,*,º› halqani tashkil qilayotgan A to‘plam elementlari sonlardan iborat bo‘lsa, ‹A,*,º› halqa sonli halqa deb yuritiladi. Endi ko‘rib chiqilgan halqa va uning xossalaridan foydalanib maydon tushunchasini kiritamiz.
Aytaylik bizga, to’plam va binar * algebraik amal berilgan bo`lsin.
1-ta’rif. Bo`sh bo`lmagan to’plamda * algebraik amal assotsiativ bo`lsa, algebra yarimg ruppa deyiladi.
2-ta’rif. Bo`sh bo`lmagan to’plamda quyidagi xossalar o`rinli bo`lsa, algebra gruppa deyiladi:
a) to’plamning ixtiyoriy elementlari uchun munosabat o`rinli bo`lsa, ya’ni binar * algebraik amal assotsiativ bo`lsa;
b) to’plamning ixtiyoriy elementi uchun shunday element mavjud bo`lib, u shartni qanoatlantirsa, ya’ni to’plamda neytral element mavjud bo`lsa;
d) to’plamning ixtiyoriy elementi uchun shunday element mavjud bo`lib, u quyidagi shartni qanoatlantirsa, ya’ni to’plamning har bir elementiga simmetrik element mavjud bo`lsa.
Ta’rifdan ko`rinadiki, algebra gruppa bo`lishi uchun * algebraik amal bo`lib, u assotsiativ bo`lishi hamda to’plamda e neytral, simmetrik elementlar mavjud bo`lishi kerak ekan.
3-ta’rif. Agar to’plamda berilgan * algebraik amal kommutativ bo`lsa, ya’ni ixtiyoriy uchun o`rinli bo`lsa, gruppa * binar algebraik amalga nisbatan kommutativ gruppa deyiladi. Kommutativ gruppa ba’zi hollarda Abel gruppa deb ham ataladi.
Binar «*» algebraik amalni «+» qo`shish amali bilan almashtiraylik. to’plamda + amali gruppa hosil qilishi uchun u quyidagi xossalarga bo`ysinishi kerak:
a) uchun bajarilishi, ya’ni qo`shish amali assotsiativ bo`lishi;
b) uchun shunday element bo`lsinki, bo`lsin, ya’ni neytral element mavjud bo`lishi;
d) to’plamning ixtiyoriy elementi uchun shartni qanoatlantiruvchi simmetrik ( ) element mavjud bo`lishi kerak.
Ma’lumki, qo`shish amali kommutativdir, shuning uchun algebra kommutativ, ya’ni Abel gruppasidir.
Misol. Haqiqiy sonlar to’plami qo`shish amaliga nisbatan kommutativ gruppa tashkil qiladi.
Haqiqatan ham, uchun
a) assotsiativlik xossasi o`rinli;
b) uchun mavjudki, ;
d) uchun topiladiki, .
Qo`shish amali haqiqiy sonlar to’plamida kommutativ, assotsiativ bo`lganidan va da neytral va simmetrik element mavjudligidan kommutativ gruppa bo`lishi kelib chiqadi.
Agar «*» algebraik amal sifatida «+» qo`shish amali olinib, algebra qo`shish amaliga nisbatan gruppa bo`lsa, bunday gruppalar additiv gruppalar deyiladi.
Agar «*» algebraik amal sifatida «·» qo`shish amali olinib, algebra ko`paytirish amaliga nisbatan gruppa bo`lsa, bunday gruppalar multi’likativ gruppalar deyiladi.
Do'stlaringiz bilan baham: |