A theory of fairness, competition, and cooperation



Download 495,96 Kb.
bet13/17
Sana09.07.2022
Hajmi495,96 Kb.
#766498
1   ...   9   10   11   12   13   14   15   16   17
Bog'liq
1atofcc

s 2 ai (1 2 2s) 2 n 2 2 b s $ 0 2 ai

ai
(1 2 s) 2 s.

n 2 1
n 2 1 i

n 2 1

n 2 1

The right-hand side of this inequality is smaller than 0. We know already that the left-hand side is greater than 0 since (A11) is violated. Therefore, responder i prefers to accept s as well. We conclude that if (A11) does not hold for at least one i, then at least one responder will accept s. Hence, (A11) is also necessary. h If b1 , (n 2 1)/ n, an equilibrium offer must be sustained by

the threat that any smaller offer will be rejected by everybody. But we know from Lemma 2 that an offer may be rejected only if (A11) holds for all i. Thus, the highest offer s that can be sustained in equilibrium is given by (8).


QED


Proof of Proposition 4

      1. Suppose that 1 2 a . bi for player i. Consider an arbitrary contribution vector ( g1, . . . , gi21, gi11, . . . , gn) of the other play- ers. Without loss of generality we relabel the players such that i 5 1 and 0 # g2 # g3 # ? ? ? # gn. If player 1 chooses g1 5 0, his payoff is given by

n b n
(A14) U1( g1 5 0) 5 y 1 a o gj 2 n 2 1 o gj.
j52 j52
Note Žrst that if all other players choose gj 5 0, too, then g1 5 0 is clearly optimal. Furthermore, player 1 will never choose g1 . max gj . Suppose that there is at least one player who chooses gj .
0. If player 1 chooses g1 . 0, g1 [ [ gk, gk11], k [ 2, . . . , n , then his payoff is given by
U1(g1 . 0)
n b1 n a1 k
5 y 2 g1 1 ag1 1 a o gj 2 n 2 1 o (gj 2 g1) 2 n 2 1 o(g1 2 gj)

j52
n
j5k11
b1 n
j52
b1 k

, y 2 g1 1 ag1 1 a o gj 2 n 2 1 o (gj 2 g1) 1 n 2 1 o(g1 2 gj)

j52
n
j5k11
b1 n
j52

5 y 2 g1 1 ag1 1 a o gj 2 n 2 1 o gj

j52
b1
j52

1 n 2 1 (n 2 1)g1
n


b1 n

5 y 2 (1 2 a 2 b1)g1 1 a o gj 2 n 2 1 o gj



n b1
j52
n
j52

, y 1 a o gj 2 n 2 1 o gj 5 U1(g1 5 0).
j52 j52
Hence, gi 5 0, is indeed a dominant strategy for player i.




      1. It is clearly an equilibrium if all players contribute nothing because to unilaterally contribute more than zero reduces the monetary payoff and causes disadvantageous inequality. Suppose that there exists another equilibrium with positive contribution levels. Relabel players such that 0 # g1 # g2 # ? ? ? # gn. By part (a) we know that all k players with 1 2 a . bi must choose gi 5 0. Therefore, 0 5 g1 5 . . . gk. Consider player l . k who has the smallest positive contribution level; i.e., 0 5 gl21 , gl # gl11 # ? ? ? # gn. Player 1’s utility is given by


o

n 2 1 o
n bl n

(A15) Ul( gl) 5 y 2 gl 1 agl 1 a gj 2
j5l11 j5l11
( gj 2 gl)



al l21 n bl n
2 n 2 1 o gl 5 y 1 a o gj 2 n 2 1 o gj

j51


n 2 l
j5l11


l 2 1
j5l11

2 (1 2 a) gl 1 bl n 2 1 gl 2 al n 2 1 gl
n 2 l l 2 1
5 Ul(0) 2 (1 2 a) gl 1 bl n 2 1 gl 2 al n 2 1 gl,
where Ul(0) is the utility player 1 gets if he deviates and chooses
gl 5 0. Since al $ bl, l $ k 1 1, and bl , 1, we have
n 2 l l 2 1
(A16) Ul( gl) # Ul(0) 2 (1 2 a) gl 1 bl n 2 1 gl 2 bl n 2 1 gl
n 2 2(k 1 1) 1 1

# Ul(0) 2 (1 2 a) gl 1 bl
n 2 1 gl

, Ul(0) 2 (1 2 a) gl 1


n 2 2k 2 1
n 2 1 gl

Thus if


5 Ul(0) 2


(1 2 a)(n 2 1) 2 (n 2 2k 2 1)
n 2 1 gl.



(A17)
(1 2 a)(n 2 1) 2 (n 2 2k 2 1)
n 2 1 $ 0,

player l prefers to deviate from the equilibrium candidate and to

choose gl 5 0. But this inequality is equivalent to (A18) (1 2 a)(n 2 1) $ n 2 2k 2 1


n 2 2k 2 1

Û a # 1 2


n 2 1

n 2 1 2 n 1 2k 1 1 2k
Û a # n 2 1 5 n 2 1
k a
Û n 2 1 $ 2 ,
which is the condition given in the proposition.

      1. Suppose that the conditions of the proposition are satis- Žed. We want to construct an equilibrium in which all k players with 1 2 a . bi contribute nothing, while all other n 2 k players contribute g [ [0, y]. We only have to check that contributing g is indeed optimal for the contributing players. Consider some player j with 1 2 a , bj. If he contributes g, his payoff is given by

(A19) Uj( g) 5 y 2 g 1 (n 2 k) ag 2 [aj/(n 2 1)] kg.
It clearly does not pay to contribute more than g. So suppose that player j reduces his contribution level by D . 0. Then his payoff is
Uj( g 2 D) 5 y 2 g 1 D 1 (n 2 k) ag 2 Da
aj bj
2 n 2 1 k( g 2 D) 2 n 2 1 (n 2 k 2 1)D
aj
5 y 2 g 2 (n 2 k) ag 2 n 2 1 kg
aj bj
1 D 1 2 a 1 n 2 1 k 2 n 2 1 (n 2 k 2 1)
aj bj
5 Uj( g) 1 D 1 2 a 1 n 2 1 k 2 n 2 1 (n 2 k 2 1) .
Thus, a deviation does not pay if and only if
aj bj
1 2 a 1 n 2 1 k 2 n 2 1 (n 2 k 2 1) # 0,
which is equivalent to
(A20) k/(n 2 1) # (a 1 bj 2 1)/(aj 1 bj).

Thus, if this condition holds for all (n 2 k) players j with 1 2 a , bj, then this is indeed an equilibrium. It remains to be shown that (a 1 bj 2 1)/(aj 1 bj) # a/ 2. Note that aj $ bj implies that (a 1 bj 2 1)/(aj 1 bj) # (a 1 bj 2 1)/(2bj). Furthermore,



a 1 bj 2 1 2bj

Download 495,96 Kb.

Do'stlaringiz bilan baham:
1   ...   9   10   11   12   13   14   15   16   17




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish