REFERENCES
[1] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and
N. Díaz-Rodríguez, ‘‘Continual learning for robotics: Definition, frame-
work, learning strategies, opportunities and challenges,’’
Inf. Fusion
,
vol. 58, pp. 52–68, Jun. 2020, doi:
10.1016/j.inffus.2019.12.004.
[2] M. McCloskey and N. J. Cohen, ‘‘Catastrophic interference in connection-
ist networks: The sequential learning problem,’’
Psychol. Learn. Motivat.
,
vol. 24, pp. 109–165, Jan. 1989, doi:
10.1016/S0079-7421(08)60536-8.
[3] R. M. French, ‘‘Catastrophic forgetting in connectionist networks,’’
Trends Cogn. Sci.
, vol. 3, pp. 128–135, May 1999, doi:
10.1016/S1364-
6613(99)01294-2.
[4] W. Fang, X. Yin, Y. An, N. Xiong, Q. Guo, and J. Li, ‘‘Optimal schedul-
ing for data transmission between mobile devices and cloud,’’
Inf. Sci.
,
vol. 301, pp. 169–180, Apr. 2015, doi:
10.1016/j.ins.2014.12.059.
[5] W. Fang, Y. Li, H. Zhang, N. Xiong, J. Lai, and A. V. Vasilakos,
‘‘On the throughput-energy tradeoff for data transmission between cloud
and mobile devices,’’
Inf. Sci.
, vol. 283, pp. 79–93, Nov. 2014, doi:
10.1016/j.ins.2014.06.022.
[6] E. Baccarelli, S. Scardapane, M. Scarpiniti, A. Momenzadeh, and
A. Uncini, ‘‘Optimized training and scalable implementation of con-
ditional deep neural networks with early exits for fog-supported
IoT applications,’’
Inf. Sci.
, vol. 521, pp. 107–143, Jun. 2020, doi:
10.1016/j.ins.2020.02.041.
[7] D. Mrozek, ‘‘Fall detection in older adults with mobile IoT devices and
machine learning in the cloud and on the edge,’’
Inf. Sci.
, vol. 530,
pp. 148–163, Oct. 2020, doi:
10.1016/j.ins.2020.05.070.
[8] Y. Zhang, H. Guo, Z. Lu, L. Zhan, and P. C. K. Hung, ‘‘Dis-
tributed gas concentration prediction with intelligent edge devices in coal
mine,’’
Eng. Appl. Artif. Intell.
, vol. 92, Jun. 2020, Art. no. 103643, doi:
10.1016/j.engappai.2020.103643.
[9] F. F. X. Vasconcelos, R. M. Sarmento, P. P. R. Filho, and
V. H. C. de Albuquerque,
‘‘Artificial
intelligence
techniques
empowered edge-cloud architecture for brain CT image analysis,’’
Eng. Appl. Artif. Intell.
, vol. 91, May 2020, Art. no. 103585, doi:
10.1016/j.engappai.2020.103585.
[10] W. Xiong, Z. Lu, B. Li, Z. Wu, B. Hang, J. Wu, and X. Xuan, ‘‘A self-
adaptive approach to service deployment under mobile edge computing
for autonomous driving,’’
Eng. Appl. Artif. Intell.
, vol. 81, pp. 397–407,
May 2019, doi:
10.1016/j.engappai.2019.03.006.
[11] S.-C. Huang, J.-N. Hwang, S.-Y. Kuo, A. P. D. Binotto, D. Upadhyay, and
P. C. K. Hung, ‘‘Special issue on Internet of Things (IoT) for in-vehicle
systems,’’
Eng. Appl. Artif. Intell.
, vol. 85, pp. 874–875, Oct. 2019, doi:
10.1016/j.engappai.2019.103235.
[12] G. S. Fischer, R. D. R. Righi, G. D. O. Ramos, C. A. D. Costa,
and J. J. P. C. Rodrigues, ‘‘ElHealth: Using Internet of Things and data
prediction for elastic management of human resources in smart hospi-
tals,’’
Eng. Appl. Artif. Intell.
, vol. 87, Jan. 2020, Art. no. 103285, doi:
10.1016/j.engappai.2019.103285.
[13] L. Kang, R.-S. Chen, W. Cao, Y.-C. Chen, and Y.-X. Hu, ‘‘Mecha-
nism analysis of non-inertial particle swarm optimization for Internet of
Things in edge computing,’’
Eng. Appl. Artif. Intell.
, vol. 94, Sep. 2020,
Art. no. 103803, doi:
10.1016/j.engappai.2020.103803.
[14] R. Kemker and C. Kanan, ‘‘FearNet: Brain-inspired model for incremental
learning,’’ in
Proc. 6th Int. Conf. Learn. Represent. (ICLR)
, 2018, pp. 1–16.
[15] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, ‘‘ICaRL:
Incremental classifier and representation learning,’’ in
Do'stlaringiz bilan baham: |