Logarifmik funksiyalarning xossalari va grafigi
Logarifmik funksiyaning ko'rinishi:
(
)
log
, 0, 1, 0
a
y
x
a
a
x
=
>
¹
>
.
1. Aniqlanish sohasi:
(
)
( )
0;
D y
=
+ ¥
barcha musbat sonlar to'plami.
2. Qiymatlar sohasi:
(
)
( )
;
E y
= -¥ + ¥
barcha haqiqiy sonlar to'plami.
3. Logarifmik funksiya aniqlanish sohasida agar
1
a
>
bo'lsa,
o'suvchi. Agar
0
1
a
< <
bo'lganda kamayuvchi.
4. Agar
1
a
>
bo'lsa, logarifmik funksiya
1
x
> da musbat
qiymatlar,
0
1
x
< <
da esa manfiy qiymatlar qabul qiladi.
5. Agar
0
1
a
< <
bo'lsa, logarifmik funksiya 0
1
x
< < da musbat
qiymatlar,
1
x
> da esa manfiy qiymatlar qabul qiladi.
6.
log
a
y
x
=
logarifmik funksiya juft ham, toq ham, davriy ham emas.
7. Logarifmik funksiyaning grafigi
(1; 0)
nuqtadan o’tadi.
Click here to buy
A
B
B
Y
Y
PD
F Transfo
rm
er
2
.0
w
w
w .A
B B Y Y.
c o
m
Click here to buy
A
B
B
Y
Y
PD
F Transfo
rm
er
2
.0
w
w
w .A
B B Y Y.
c o
m
43
8.
(
)
log
, 0, 1, 0
a
y
x
a
a
x
=
>
¹
>
funksiyaning grafigi:
(
)
( )
0;
D y
=
+ ¥
,
(
)
( )
;
E y
= -¥ + ¥
.
Logarifmik tenglamalar
Ushbu
(
)
log
0, 1,
a
x
b
a
a
b
R
=
>
¹
Î
ko`rinishdagi
tenglamalarga sodda logarifmik tenglama diyiladi.
Yechishda qo’llaniladigan asosiy ekvivalent almashtirishlar:
1.
log
,
0 (
1,
0)
b
a
x
b
x
a
x
a
a
= Û =
>
¹
>
.
2.
log
( )
( )
,
( )
0,
b
a
f x
b
f x
a
f x
b
R
= Û
=
>
Î
(
1,
0)
a
a
¹
>
.
3.
( )
( )
0,
( )
0,
( )
1,
log
( )
( )
( ).
x
b
f x
x
x
f x
b
f x
x
j
j
j
j
>
>
¹
ìï
= Û í
=
ïî
4.
( )
( )
0 , 0 , 1,
lo g
( )
( )
( )
.
a
x
f
x
a
a
f
x
x
f
x
a
j
j
>
>
¹
ìï
=
Û í
=
ïî
5.
( )
0,
( )
0, 0, 1,
log
( )
log
( )
( )
( ).
a
a
f x
g x
a
a
f x
g x
f x
g x
>
>
>
¹
ì
=
Û í
=
î
6.
( )
( )
( ) 0,
( ) 0,
log
log
( ) 1, 0,
( ) 1, 0,
( )
( );
( )
( ).
f x
g x
f x
g x
A
A
f x
A
yoki
g x
A
f x
g x
f x
g x
>
>
ì
ì
ï
ï
=
Û
¹
>
¹
>
í
í
ï
ï
=
=
î
î
7.
og
( )
l
( )
0,
( )
0,
( )
0,
1,
( )
( ).
g x
a
f x
g x
f x
a
a
a
f x
g x
>
>
ì
ï
=
Û
>
¹
í
ï
=
î
8.
(
)
( )
( )
0,
( )
0,
log
( )
log
( )
log
( ) 0,
1
( )
( )
.
a
a
a
f x
g x
f x
g x
m x
a
a
f x
g x
m x
>
>
ìï
+
=
>
¹
Û í
×
=
ïî
Click here to buy
A
B
B
Y
Y
PD
F Transfo
rm
er
2
.0
w
w
w .A
B B Y Y.
c o
m
Click here to buy
A
B
B
Y
Y
PD
F Transfo
rm
er
2
.0
w
w
w .A
B B Y Y.
c o
m
44
9.
(
)
(
)
2
1
( )
0,
2
1 log
( )
log
( )
0,
1,
( )
( ).
a
a
n
g x
n
f x
g x
a
a
n
N
f
x
g x
+
>
ìï
+
=
>
¹
Î
Û í
=
ïî
10.
(
)
2
( )
0,
2 log
( )
log
( ) 0,
1,
( )
( ).
a
a
n
f x
n
f x
g x
a
a
n
N
f
x
g x
>
ìï
=
>
¹
Î
Û í
=
ïî
11.
(log
)
0, 0, 1
log
,
( )
0.
a
a
f
x
a
a
x
t
f t
=
>
¹ Û
=
=
12.
log
log
log
, 0,
0,
0, 1,
1,
1,
0
a
b
c
x
x
x
d
a
b
c
a
b
c
x
+
+
=
>
>
>
¹
¹
¹
> Û
log
log
log
.
log
log
a
a
a
a
a
x
x
x
d
b
c
Û
+
+
=
Logarifmik tengsizliklar
Logarifmik tengsizliklar ushbu ekvivalent almashtirish
yordamida yechiladi:
1.
0
1,
lo g
( )
( )
0 ,
( )
.
a
b
a
f x
b
f x
f x
a
ì < <
ï
³
Û
>
í
ï
£
î
2.
1,
lo g
( )
( )
0,
( )
.
a
b
a
f x
b
f x
f x
a
ì >
ï
³
Û
>
í
ï
³
î
3.
0
1,
( )
0,
1,
( )
0,
log
( )
log
( )
( )
0,
( )
0,
( )
( );
( )
( ).
a
a
a
g x
a
g x
f x
g x
f x
f x
f x
g x
f x
g x
<
<
>
>
>
ì
ì
ï
ï
<
Û
>
>
í
í
ï
ï
>
<
î
î
U
4.
[
]
[
]
( )
0
( )
1,
( )
1,
lo g
( )
( )
0,
( )
0,
( )
( )
;
( )
( )
.
f x
a
a
f x
f x
g x
a
g x
g x
g x
f x
g x
f x
ì
ì
<
<
>
ï
ï
ï
ï
<
Û
>
>
í
í
ï
ï
>
<
ï
ï
î
î
U
5.
( )
0
( )
1,
( )
1,
lo g
( )
0
0
( )
1
( )
1 .
f
x
f
x
f
x
g x
g x
g x
<
<
>
ì
ì
>
Û í
í
<
<
>
î
î
U
6.
( )
0
( )
1,
( )
1,
lo g
( )
0
( )
1
0
( )
1 .
f
x
f x
f x
g x
g x
g x
<
<
>
ì
ì
<
Û í
í
>
<
<
î
î
U
7.
( )
0
( )
1,
( )
1,
lo g
( )
0
0
( )
1
( )
1 .
f
x
f x
f
x
g x
g x
g x
<
<
>
ì
ì
³
Û í
í
<
£
³
î
î
U
8.
( )
0
( )
1,
( )
1,
lo g
( )
0
( )
1
0
( )
1 .
f x
f x
f x
g x
g x
g x
<
<
>
ì
ì
£
Û í
í
³
<
£
î
î
U
9.
( )
( )
( )
1,
( )
0 ,
lo g
( )
lo g
( )
( )
0 ,
0
( )
1,
( )
( );
( )
( ).
x
x
x
f x
f x
g x
g x
x
f x
g x
f x
g x
j
j
j
j
>
>
ì
ì
ï
ï
>
Û
>
<
<
í
í
ï
ï
>
<
î
î
U
Click here to buy
A
B
B
Y
Y
PD
F Transfo
rm
er
2
.0
w
w
w .A
B B Y Y.
c o
m
Click here to buy
A
B
B
Y
Y
PD
F Transfo
rm
er
2
.0
w
w
w .A
B B Y Y.
c o
m
45
10.
( )
(
)
( )
1,
( )
0 ,
lo g
( )
lo g
( )
( )
0 ,
0
( )
1,
( )
( ) ;
( )
( ) .
x
x
x
g x
f
x
g x
f
x
x
f
x
g x
f
x
g x
j
j
j
j
>
>
ì
ì
ï
ï
£
Û
>
<
<
í
í
ï
ï
£
³
î
î
U
T R I G O N O M E T R I Y A
Boshlang’ich tushunchalar
1.
0
a
-gradusdan radianga o’tish:
1 8 0
r a d
p
a
a
=
×
o
o
.
2.
rad
a
-radiandan gradusga o’tish:
1 8 0
r a d
a
a
p
=
×
o
o
.
3. Ta`riflar:
1)
y
sin
y
r
a = = ; 2)
x
cos
x
r
a
= = ;
3)
,
0
y
tg
x
x
a
=
¹
; 4)
,
0
x
ctg
y
y
a =
¹
;
5)
sin
cos
tg
a
a
a
=
; 6)
cos
sin
ctg
a
a
a
=
.
Trigonometrik funksiyalar qiymatlari jadvali
Funksiyalar
Burchak α,
gradus(radian)
sin α
cos α
tg α
ctg α
0° (0)
0
1
0
Mavjud emas
15° (π/12)
3 1
2 2
-
3 1
2 2
+
2
3
-
2
3
+
18° (π /10)
5 1
4
-
5
5
2 2
+
5 1
10 2 5
-
+
10 2 5
5 1
+
-
22,5° (π /8)
2
2 2
-
2
2 2
+
2 1
-
2 1
+
30° (π /6)
1 2
3 2
1
3
3
36° (π /5)
5
5
2 2
-
5 1
4
+
10 2 5
5 1
-
+
5 1
10 2 5
+
-
45° (π /4)
2 2
2 2
1
1
60° (π /3)
3 2
1 2
3
1
3
90° (π /2)
1
0
Mavjud
emas
0
Click here to buy
A
B
B
Y
Y
PD
F Transfo
rm
er
2
.0
w
w
w .A
B B Y Y.
c o
m
Click here to buy
A
B
B
Y
Y
PD
F Transfo
rm
er
2
.0
w
w
w .A
B B Y Y.
c o
m
46
75° (5 π /12)
3 1
2 2
+
3 1
2 2
-
2
3
+
2
3
-
180° (π)
0
-1
0
Mavjud emas
270° (3 π /2)
-1
0
Mavjud
emas
0
360° (2 π)
0
1
0
Mavjud emas
Trigonometrik funksiyalarning ishoralari
Asosiy trigonometrik ayniyatlar
1.
2
2
cos
sin
1
a
a
+
=
. 2.
(
)
sin
1
;
2
1 ,
cos
2
tg
n
n
Z
ctg
a
p
a
a
a
a
=
=
¹
+
Î
.
3.
1
tg
ctg
a
a
×
= . 4.
cos
1
;
,
sin
ctg
n
n
Z
tg
a
a
a p
a
a
=
=
¹
Î
.
5.
2
2
1
1
cos
tg
a
a
+
=
. 6.
2
2
1
1
;
,
sin
ctg
n
n
Z
a
a p
a
+
=
¹
Î
.
Do'stlaringiz bilan baham: |