A generalized expansion method for the loaded Burgers equation Introduction



Download 0,66 Mb.
bet1/5
Sana10.02.2022
Hajmi0,66 Mb.
#440724
  1   2   3   4   5
Bog'liq
Burgers mokolo 25.12.2022


A generalized - expansion method for the loaded Burgers equation
Introduction
In this paper, the solutions of the loaded modified Burgers equation, one of the most significant integrally nonlinear differential equations, are explored. Inthe literature [1,2,3,4,5],loaded diffential equationsare typically called equations containing in the coefficients or in the right-hand side any functionals of the solution, in particular the values of the solution or its derivatives on manifolds of lower dimension. This type of equations wereexplored in works of N.N. Nazarov and N.N. Kochin. However, they did not use the term “loaded equation”. At first, the term has been used in works of A.M. Nakhushev, where the most general definition of a loaded equation is given and various loaded equations are classified in detail, for instance, loaded differential, integral, integro-differential, functional equations etc., and numerous applications are described.
Nowadays, various methods exist to solve nonlinear differentialequations.Forinstance, Hirota direct method [6], the inverse scattering problem for the Dirac operator that studied in the works of V. E. Zakharov, A. B. Shabat [7], I. S. Frolov [8], L. A. Takhtajyan, L. D. Faddeev [9] and M. Wadati[10] and the binary Darboux transformations [11,12]. Alternatively, the - expansion method [13,14,15,16,17,18,19,20,21,22] is also effective in finding traveling wave solutionsof nonlinear evolution equations.
In this article, the solutions of the loaded Burgers equation are studied by usage of - expansion method.
Let’s consider the following loaded Burgers equation
, (1)
where is an unknown function, , , - is the given real continuous function.

Download 0,66 Mb.

Do'stlaringiz bilan baham:
  1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish