Graphical representation of the solutions of the loaded Burgers equation
Above we have shown how to find the solutions of the loaded mKdv equation. In this section, we show the solutions of some loaded mKdV equations in 3D plot formats to make it easier to imagine.
Fig. 1.The solution of the loaded mKdVequationfor , , and .
Fig. 2. The solution of the loaded mKdV equation for , , and .
Fig. 3. The solution of the loaded mKdV equation for , , and .
REFERENCES
[1] B. B. Kadomtsev, V. I. Karpman, Nonlinear waves, Sov. Phys. Usp. 14 , 40 (1971).
[2] A. M. Nakhushev, On nonlocal problems with shift and their connection with loaded equations, Differents. Uravn., 21, 92 (1985).
[3] J. R. Cannon, H. M. Yin, On a class of nonlinear nonclassical parabolic problems , J. Different. Equat., 79, 266 (1989)
[4] J. M. Chadam, A. Peirce, H. M. Yin, The blowup property of solutions to some diffusion equations with localized nonlinear reactions, J. Math.Analys.and Appl., 169, 313 (1992).
[5] U. Baltaeva, P. J. Torres, Analog of the Gellerstedt problem for a loaded equation of the third order, Math. Meth.Appl. Sc., 42, 3865 (2019).
[6] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 1192 (1971).
[7] Захаров В.Е., Шабат А.Б. Точная теория двумерной самофокусировки и одномерной автомодуляции волн в нелинейных средах // ЖЭТФ, 1971, т. 61, N 1, С. 118-134.
[8] Фролов И.С. Обратная задача рассеяния для системы Дирака на всей оси // ДАН СССР, 1972, Т. 207, N 1, С.44-47.
[9] Тахтаджян Л.А., Фаддеев Л.Д. Гамильтонов подход в теории солитонов. М.: Наука, 1986.
[10] Wadati M. The exact solution of the modified Korteweg-de Vries equation // J. Phys. Soc., 1972, v.32, P. 1681.
[11] C. Rogers, W. F. Shadwick, Backlund Transformations, Academic Press, New York, (1982).
[12] M. Wadati, H. Shanuki, K. Konno, Prog. Theor.Phys. 53, 419 (1975).
[13] Z. L. Li, Constructing of new exact solutions to the GKdV-mKdV equation with any-order nonlinear terms by (G’/G)-expansion method, Appl. Math. Comput., 217, 1398 (2010).
[14] E. M. Zayed, The (G’/G)-expansion method and its applications to some nonlinear evolution equations in the mathematical physics, J. Appl. Math. Comput.,30, 89 (2009).
[15] E. M. Zayed, The (G’/G)-expansion method combined with the Riccati equation for finding exact solutions of nonlinear PDEs, J. Appl. Math. Inform., 29, 351 (2011).
[16] E. M. Zayed, K. A. Alurrfi, Extended generalized (G’/G)-expansion method for solving the nonlinear quantum ZakharovKuznetsov equation, Ricerche Mat., 65, 235 (2016).
[17] N. Shang, B. Zheng, Exact Solutions for Three Fractional Partial Differential Equations by the (G’/G) Method, Int. J. Appl. Math., 43, 114 (2013).
[18] A. Bekir, O. Guner, Exact solutions of nonlinear fractional differential equations by (G’/G)-expansion method, Chin. Phys. B, 22, 110202 (2013).
[19] A. Bekir, Application of the (G’/G)-expansion method for nonlinear evolution equations, Phys. Lett. A, 372, 3400 (2008).
[20] S. Zhang, J. L. Tong, W. Wang, A generalized (G’/G)-expansion methodfor the mKdV equation with variable coe?cients, Phys. Lett. A, 372, 2254 (2008).
[21] E. M. E. Zayed, K. A. Gepreel, The (G’/G) expansion method for indingtraveling wave solutions of nonlinear partial differential equations in mathematical physics, Journal of Mathematical Physics, 50, 013502 (2009).
[22] E. M. E. Zayed, The (G’/G) expansion method and its applications to some nonlinear evolution equations in the mathematical physics, Journal of Applied Mathematics and Computing, 30, 89 (2009).
[23] M. Wang, X. Li, J. Zhang, The (G’/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, PhysLett. A., 372, 417 (2008).
Do'stlaringiz bilan baham: |