2). Agar H
1
,H
2
,...,H
n
hodisalar to`la gruppa tashkil etsa, ixtiyoriy A hodisa uchun
=
=
n
i
H
i
A
P
H
P
A
P
i
1
)
(
)
(
)
(
to`la ehtimollik formulasi o`rinli;
3). Agar P(H
1
+
H
2
+
...+H
n
)=1 bo`lsa, ixtiyoriy A hodisa uchun
=
=
n
i
H
i
A
P
H
P
A
P
i
1
)
(
)
(
)
(
to`la
ehtimollik formula o`rinli
A) 1) B) 2) C) 3) D) Hammasi to`g`ri
34. To`la ehtimollik formulasi bo`yicha ixiyoriy A hodisa (P(A)>0) uchun
( )
Ø
( )
( )
(Ø)
( )
P A
P
P A
P
P A
=
+
tenglikni yozish mumkinmi?
A) Har doim mumkin B) Ba`zi hollarda mumkin C) Mumkin emas D) A≠
Ω
holda mumkin
35. A tasodifiy hodisa bo`lib, H
1
,H
2
,...,H
n
– to`la gruppa tashkil etuvchi hodisalar bo`lsa, Bayes
formulasini ko`rsating: 1).
(
)
(
)
(
)
( )
;
1,
( )
i
i
A
i
H
P H P H
P
A
i
n
P A
=
=
2).
(
)
(
)
( )
(
)
;
1,
(
)
( )
i
i
i
H
A
i
i
H
P H P
A
P H
i
n
P H P
A
=
=
3 ) .
(
)
(
)
( )
(
)
;
1,
( )
i
i
H
A
i
P H P
A
P H
i
n
P A
=
=
A) 1) B) 2) va 3) C) 3) D) 1) va 2)
36. A - tasodifiy hodisa bo`lib, H
1
,H
2
,...,H
n
- to`la gruppa tashkil etuvchi hodisalar bo`lsa, to`g`ri
tengliklarni ko`rsating;
1).
=
=
n
i
i
A
H
P
1
1
)
(
; 2).
=
=
n
i
i
A
A
P
H
P
1
)
(
)
(
; 3).
=
=
n
i
i
A
H
P
1
0
)
(
;
A) 1) B) 2) C) 3) D) To`g`ri tenglik yo`q
37. Beshta kubik birdaniga tashlanadi. Shu tajribaga mos keluvchi hodisalar to`la gruppasi nechta
hodisadan iborat?
A) 30 B)56 C) 65 D) 25
38. A,B va C hodisalar to`la gruppa tashkil etadi.
3
2
)
(
=
A
P
;
6
1
)
(
=
B
P
bo`lsa, P(C) ehtimolni
toping.
A)
6
1
B)
9
1
C)
3
1
D) 0
39. A va B hodisalar to`la gruppa tashkil etadi. Agar
17
12
)
(
=
A
P
bo`lsa, P(B) ehtimolni toping..
A)
17
13
B)
17
14
C)
17
7
D)
17
5
40. O`nta A
1,
A
2,...,
A
10
hodisalari teng imkoniyatli bo`lib, to`la gruppa tashkil etadi. P(A
5
)
ehtimollikni toping.
A) 0.1 B) 0.2 C) 0.3 D) 0.5
41. To`g`ri yozilgan Bernulli formulasini ko`rsating: (0
1).
( )
k
k
n
n
n
P k
C p q
=
;
2).
!
( )
;
!(
)!
k
n k
n
n
P k
p q
k n k
−
=
−
3).
( )
(1
)
;
k
k
n k
n
n
P k
C p
p
−
=
−
4).
!
( )
;
!(
)!
k
n
n
k
P k
p q
n n k
=
−
A) 1) B) 2) va 3) C) 3) D) 1) va 4)
42. Qurilma 3 ta erkli ishlaydigan elementdan iborat. T vaqt davomida har bir elementning
buzilmaslik ehtimoli p=0.94 ga teng. T vaqt davomida uchala elementning ham buzilish ehtimoli
qanday?
A) P=(0.94)
3
B) P=1-(0.94)
3
C) P=(0.06)
3
D) P=0
43. Talabalar tomonidan bajarilgan diplom ishlarida “a`lo” baholanganlari o`rtacha 35%ni tashkil
etadi. Agar kursda 27 ta diplom ish yozilgan bo`lsa, “a`lo” baholangan ishlarning eng ehtimolli
soni qanchaga teng?
A) 6ta B) 7 ta C) 8 ta D) 9ta
44. A hodisaning 8 ta erkli sinovlarda ro`y berishlarinign eng ehtimolli soni 2 ga teng bo`lsa, A
hodisaning bir sinovda ro`y berish ehtimolini toping:
A)
1
4
P
=
B)
1
6
P
=
C)
1
8
P
=
D)
1
16
P
=
45. Agar A hodisa muqarrar hodisa bo`lsa, uning 5ta erkli sinashda roppa rosa 3 marta ro`y berish
ehtimoli qanday?
A) P=1 B)
3
5
P
=
C)
2
5
P
=
D) P=0
46. Qo`shma korxona tayyorlagan mahsulotning jahon standartiga mos bo`lish ehtimoli 0.98
ekanligi aniqlangan. Mahsulotlar partiyasidagi 1000 ta mahsulotdan kamida 996 tasining jahon
standartlariga mos bo`lish ehtimolini qaysi formula bilan aniqroq hisoblash mumkin?
A) Laplasning lokal teoremasi formulasi bilan B) Klassik ta`rif formulasi bilan
C) Puasson formulasi bilan D) Nisbiy chastota formulasi bilan
47. Biror A hodisaning 100 ta erkli sinovning har birida ro`y berish ehtimoli 0.7 ga teng. Shu
hodisaning 100 ta sinovda kamida 70 marta ro`y berish ehtimoli qanday?
A) P
≈0.5
B)
7
100
80
7
;
!
K
K
e
P
K
−
=
=
C)
70
100
100
100
C
P
C
=
D)
( )
20
80
80
100
(0,7)
0,3
P
C
=
48. P
n
(K) – hodisaning n ta erkli sinashda roppa rosa K marta ro`y berish ehtimoli bo`lsa, to`g`ri
tenglikni ko`rsating:
1).
1
)
(
0
=
=
n
K
n
K
P
; 2).
=
=
n
K
n
n
K
P
0
2
)
(
;
3)
( )
1
0
1
( )
n
n
n
K
P
P K
=
= −
;
4).
( )
1
0
1
( ).
n
n
n
K
P n
P K
−
=
= −
A) 1) va 2) B) 1),2),3) C) 1),3),4) D) Hammasi to`g`ri
49. Agar A hodisaning 100ta erkli sinashning har birida ro`y berish ehtimoli 0.6 ga tengligi ma`lum
bo`lsa, P
100
(60) ehtimolni qanday hisoblagan ma`qul
A) Laplasning lokal teoremasi yordamida B) Laplasning integral teoremasi yordamida
C) Puasson formulasi bilan D) Klassik ta`rif yordamida
50. Laplasning integral teoremasi qaysi holda qo`llaniladi?
1). Erkli sinashlar soni n yetarlicha katta bo`lib, A hodisaning ehtimoli sinashlarda o`zgaruvchan
bo`lsa;
2). Sinashlar soni n
≥
30 bo`lib, sinashdan sinashga o`tganda A hodisaning ehtimoli o`zgaruvchan
bo`lsa;
3). erkli sinashlar soni katta bo`lib, har bir sinashda P(A) ehtimollik o`zgarmas va 0 bilan 1 dan
farqli bo`lsa.
A) 1) B) 1),2) C) 3) D) 1) va 1)
51. Sug`urta hodisasining ro`y berish ehtimoli 0.003 ga teng. Agar 15000 ta sug`urta shartnomasi
tuzilgan bo`lsa, sug`urta to`lanadigan shartnomalarning eng ehtimolli sonini toping.
A) 50 B) 15 C) 45 D) 46
52. Agar 5 ta erkli sinovning har birida P(A)=0.7 bo`lsa, A hodisaning uch marta ro`y berish
ehtimolini toping.
A) 0.35 B) 0.21 C) 0.4115 D) 0.3087
53. Oiladagi 4 ta farzanddan 2 ta o`g`il bo`lish ehtimoli nimaga teng.
A) 0.375 B) 0.5 C) 0.625 D) 0.4
54. Agar P(A)=0.6 bo`lsa, A hodisa ustida o`tkazilgan 3 ta erkli sinovda hodisaning ro`y bermaslik
ehtimolini toping.
A) 0.4 B) 0.16 C) 0.064 D) 0.216
55. Korxonada tayyorlanayotgan mahsulotlarning o`rtacha 0,3%i sifatsiz. 5000 ta mahsulot
orasidagi sifatsizlarining eng ehtimolli sonining ehtimolini qaysi formula bilan hisoblagan ma`qul.
A) Bernilli formulasi bilan B) Lokal teorema formulasi bilan
C) Integral teorema formulasi bilan D) Puasson formulasi bilan
56. Agar A hodisa muqarrar hodisa bo`lsa, uning 100 ta erkli sinovda roppa-rossa 50 marta ro`y
berish ehtimolini toping.
A) 0.5 B) 0.25 C) 0 D) 1
57. Kubik 50 marta tashlanganda toq ochko 25 marta tushish ehtimolini qaysi formula bilan
hisoblanadi?
A) To`la ehtimol formulasi bilan B) Lokal teorema formulasi bilan
C) Integral teorema formulasi bilan D) Puasson formulasi bilan
58. 100 ta aktsiyaning har biridan 0.8 ehtimollik bilan daromad olish mumkin. Kamida 60 ta
aktsiyadan daromad olish ehtimoli nimaga teng.
A)
≈
1 B)
≈0.8
C)
≈0.5
D)
≈0.6
59. 100 ta aktsiyaning har biridan 0.8 ehtimollik bilan daromad olish mumkin. Rosa 80 ta
aktsiyadan daromad olish ehtimoli nimaga teng.
A) 0.8 B)
1
4 2
C) 1 D) 0.64
60. Agar A mumkin bo`lmagan hodisa bo`lsa, uning 100 ta erkli sinovda roppa-rossa 50 marta
ro`y berish ehtimolini toping.
A) 0.5 B) 0 C) 1 D) 0.25
61. Tanga 500 marta tashlanadi. X– gerb tomon tushishlar soni bo`lsin. X ning taqsimoti qanday
qonunga bo`ysunadi?
A) Puasson taqsimotiga B) Binomial taqsimotiga
C) Diskret tekis taqsimotiga D) Normal taqsimotiga
62. O`yin soqqasini birinchi marta “6” ochko tushguncha tashlanadi. X – soqqa tashlashlar soni
bo`lsin. X – tasodifiy miqdor qanday taqsimotga ega?
A)
(
)
1
5
6
6
Do'stlaringiz bilan baham: