9-sinf 1-variant



Download 1,69 Mb.
bet14/14
Sana31.12.2021
Hajmi1,69 Mb.
#229306
1   ...   6   7   8   9   10   11   12   13   14
Bog'liq
[@darsliklar] 9-11 sinf matematika test

2 2 2 2


A) 1 B) 1 /2 C) 2 D) 1 /4 E) 1 /8

  1. Hisoblang: sin 4 + cos 4 + sin 4 + cos 4 .

A) 1 B) 1 /2 C) 2 D) 1 /4 E) 1/8

  1. Agar sin α = 1/3 bo’lsa, cos (π /4 – α) sin (3π /4 – α) ni hisoblang.

A) 5/6 B) 3/ 4 C) 4/5 D) 3 /4 E) 3 /2

1 −sin2−cos2α−sin2α



  1. Soddalashtiring:

4sin4

A) tg2 B) 1 C) –1 D) ctg2 E) – ctg2



  1. Agar tg α = 1/ 2 bo’lsa, sin (2 α + π /4) ni hisoblang.

A) 1 /2 B) – 1 / 2 C) –2 D) 4 /5 E) – 4 /5

  1. Hisoblang: sin 200 sin 400 sin 800

A) B) C) D) E)

  1. sin 160 ni cos 370 = a orqali ifodalang.

A) a2 – 1 B) a –1 C) 2a2 – 1 D) 1 – a2 E) aniqlab bo'lmaydi

16. m ning m−1; 5m−1; 12m+1 lar ko‘rsatilgan tartibda arifmetik progressiya tashkil qiladigan qiymatlari yig‘indisni toping.

A) 12 B)13 C) 8 D) 15 E)aniqlab bo'lmaydi 17. Agar a = 25 + 2-5 va b = 25 – 2-5 bo’lsa, a2 – b2 ni toping?

A) 0 B) 2 C) 1 /2 D) 1 /4 E) 4


  1. Hisoblang: 7+ 4 3 + 7−4 3

A) 3 B) 5 C) 4 D) 6 E) 7

  1. Soddalashtiring: 21−2 21+ 2 19−6 2

A) 3 2 + 1 B) 3 2 + 2 C) 3 2 - 2 D) 2 3 + 2 E) 3 2 - 1 2 2

a a −6−(a +3) a − 4

  1. a = 5,2 da ifodani qiymatini hisoblang. a2 + a −6−(a −3) a2 − 4

A) 1,5 B) – 2,5 C) – 1,5 D) 2,4 E) – 3,2

  1. Soddalashtiring:

A) 2 B) 1 C) 3 D) 4 E) 6

− − −


  1. Soddalashtiring: a − 2a + a :a

A) a – 2 B) a2 – 1 C) a – 1 D) a −3 E) a2 −1

4x2 −4xy +3y2 x + y



  1. Agar 2 2 =1 bo’lsa, ni hisoblang.

2y + 2xy −5x x y

A) 2 B)–2 C) 1 /2 D) – 1 /2 E) – 1



  1. a ning qanday qiymatlarida (a2 + 2)x = a (x – 7) + 2 tenglamaning ildizlari cheksiz ko‘p bo‘ladi?

A) - 2 B) C) 2 D) - 2 ; 2 E) to’g’ri javob yo’q

⎧ 10


xy/(x + y) = 7

⎪ 40



  1. yz/(y + z) = sistemasidan x ni toping.

⎪ 13

⎪ 5


⎪⎩7x/(x + z) = 3

A) 80/79 B) 3/7 C) 7/13 D) 79/80 E) 7/5

⎧3x +(k −1)y = k +1


  1. k ning qanday qiymatlarida ⎨ tenglamalar sistemasi (k +1)x + y = 3

cheksiz ko‘p yechimga ega bo‘ladi?

A) –1 B) –2 C) 0 D) 2 E) 1



  1. Ushbu (x2 – x – 1) (x2 – x – 7) 5 tengsizlikni eng katta va eng kichik butun ildizlari ayirmasini toping.

A) 2 B) 3 C) 4 D) 5 E) 6

  1. Agar 9 x y z t 81 bo’lsa, x/y + z/t ifodaning eng kichik qiymatini toping?

A) 2 /3 B) 3 /2 C) 1 /5 D) 1 /3 E) aniqlab bo’lmaydi

  1. Tenglamaning ildizlari yig’indisini toping: |x + 1| = 2 |x – 2|.

A) 2 B)3 C) 4 D) 1 E) 0

3 3 x

  1. Agar 1+ x −1 + 1− x −1 = 2 bo’lsa, ni hisoblang. x + 2

A) 2 /3 B) – 2 /3 C)1 /3 D) – 1 /3 E) 3 /5

  1. a soni b2 – 3 bilan to‘g‘ri proporsional. b =5 bo‘lganda a = 88 bo‘lsa, b = -3 bo‘lganda a soni nechaga teng bo‘ladi?

A) 24 B) 6 C) 18 D) 12 E) 36

  1. 5−| 2x −1| < 2 tengsizlikning butun yechimlari sonini toping.. A) 2 B) 3 C) 4 D) 6 E) cheksiz ko’p

x2 −4x + 4

  1. Funksiyaning aniqlanish sohasini toping: y = 2

1− x

A) (-1; 1) B) (-1; 1) U {2} C) (-1; 2) D) (-∞; -1) U {2} E) (-∞; -1) U (1; +∞)



  1. m ning qanday qiymatlarida 4x2 – ( 3 m – 3)x – 9 = 0 tenglama turli ishorali ildizlarga ega bo’ladi?

A) 1,5 B) ± 3 C) 1,5 D) 3 E) 0

⎛ 1 ⎞⎛ 1 ⎞ ⎛ 1 ⎞

  1. Hisoblang: ⎜1− 2 ⎟⎜1− 2 ⎟...⎜1− 2 ⎟.

⎝ 5 ⎠⎝ 6 ⎠ ⎝ 103 ⎠

A) 64/103 B) 67/103 C) 69/103 D) 415/515 E) 416/515 2  2



  1. Agar a(x;1;−1), b(1;0;1) vektorlar uchun (a+3b) =(a−2b) shart bajarilsa, х ni toping.

A) 0 B) 1 C) – 1 D) 0,5 E) – 1 /2

  1. Uchburchakning uchlari A(3; -2; 1), B (3; 0; 2) , C(1; 2; 5) nuqtalarda joylashgan. Shu uchburchakning BD medianasi va AC asosi orasidagi burchakni toping.

A) 30 0 B) 600 C) 450 D) arccos 1 /3 E) 750

  1. b vektor a (1; 2; 2) vektorga kollinear hamda bu vektorlarning skalyar 

ko‘paytmasi 36 ga teng. b vektorning uzunligini toping.

A) 3 B) 4 C) 12 D) 6 E) 5



  1. Berilgan nuqtadan tekislikka uzunliklari 13 va 37 sm bo‘lgan ikkita og‘ma o‘tkazilgan. Og‘malarning tekislikdagi proyejsiyalari nisbati 1 : 7 kabi bo‘lsa, tekislikdan berilgan nuqtagacha bo‘lgan masofani toping.

A) 12 B) 11,5 C) 11 D) 10,5 E)19

  1. AB kesma α tekislikni O nuqtada kesib o‘tadi. Agar AO : OB = 3 : 2 bo‘lib, B nuqtadan x tekislikkacha bo`lgan masofa 8 ga teng bo`lsa, A nuqtadan α tekislikkacha bo`lgan masofani aniqlang.

A) 11 B) 12 C) 10 D) 9 E) 13

  1. x2 = y2 + 2y + 13 tenglamani qanoatlantiruvchi (x; y) butun sonlar juftligini toping.

A) (4; 1), (-4; 1) B) (4; 1), (4;- 1), (-4; 1), (-4; -3) C) (4; -3), (-4; -3) D) (4; 1) E) cheksiz ko'p

x3 2



  1. Tenglamani yeching: + x −4 = 0

4− x2

A) ± 2 B) 2 C) ± 2 D) 2 E) yechimi yo'q

  1. Sonlarni taqqoslang: a = sin1 , b = log.

A) a = b B) a > b C) a = b + 1 D) a < b E) taqqoslab bo'lmaydi sin x +tgx

  1. x ning qanday qiymatlarida ifoda musbat bo’ladi?

A) x B) (-∞; ∞)

C) (0; ∞) D) (-∞; 0) E) x ≠πκ,κ∈Ζ



5

  1. n ning qnday qiymatlarida cosnx ⋅ sin x ning davri 3π ga teng? n

A) ±1, ±3, ±5, ±15 B) 1, 3, 5, 15 C) 1, 2, 3, 4 D) n = 5k E) n ≠ 5k
Download 1,69 Mb.

Do'stlaringiz bilan baham:
1   ...   6   7   8   9   10   11   12   13   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish