9-klass Matematika juwmaqlawshı attestatsiya
1-BILET
|
ańlatpanıń mánisin tabıń.
Teńlemeni sheshiń:
Ápiwayılastırıń:
Eki uqsas úshmúyeshlikler berilgen. Eger bolsa, uqsaslıq koefficiyentin tabıń.
Radiusı 7 cm bolǵan sheńberdiń orayınan 13 cm qashıqlıqtaǵı P noqatınan ótiwshi tuwrı sızıq sheńberdi A hám B noqatlarda kesip ótedi. Eger PA = 10 cm bolsa, AB xordanı tabıń.
|
2-BILET
Esaplań:
Bir san ekinshi sannıń 45 ini payda etedi. Sanlardan biri ekinshisinen 66 ǵa kóp bolsa, usı sanlardı tabıń.
Eger bolsa, sin2α ni esaplań.
Vektorlar arasındaǵı múyeshti tabıń.
Radiusı 6 cm bolǵan sheńberdiń O orayınan 4 cm qashıqlıqta P noqat alınǵan. P noqat arqalı AB xorda ótkerildi. Eger AP = 2 cm bolsa, PB kesindisin tabıń.
|
3-BILET
Esaplań:
Eki qaladan bir-birine qarap eki sayaxatshı jolǵa shıqtı. Birinshisi avtomashinada, tezligi 62 km/saat. Ekinshisi avtobusda, tezligi 48 km/saat. Eger olar 0,6 saatdan keyin ushrasqan bolsa, qalalar arasındaǵı aralıqtı tabıń.
Teńlemeni sheshiń:
Tuwrı múyeshli trapeciyanıń qaptal tárepleriniń qatnası 1:2 kóriniste. Trapeciyanıń úlken múyeshin tabıń .
Qońsılas múyeshlerden biri ekinshisiniń ine teń bolsa, múyeshlerdiń úlkeninen kishisiniń ayırmasın tabıń.
|
4-BILET
Esaplań:
Velosipedshi 3 saatda 108 km aralıqtı basıp ótken bolsa, ol 3 minutta qansha aralıqtı basıp ótedi?
Eger tgα=2 bolsa, ni tabıń
Sheńberge sırtlay sızilǵan tórtmúyeshliktiń maydanı 21 cm2 ga, perimetri bolsa 7 cm ge teń. Sheńberdiń radiusın tabıń.
Boyı 170 cm bolǵan adam sayasınıń uzınlıǵı 1 m bolsa, biyikligi 5,4 m bolǵan sım aǵash sayasınıń uzınlıǵıni tabıń.
|
5-BILET
Ańlatpanı ápiwayılastırıń .
y= - x2+5x-1 parabola ushınıń koordinataların anıqlań.
Eger bolsa, cosx ti tabıń.
Tárepi 6 cm bolǵan durıs úshmúyeshlikke sırtlay sızilǵan sheńber uzınlıǵın tabıń.
Parallelogramm múyeshlerinen biriniń bissektrisasi ózi kesip ótetin tárepti 4 cm hám 5 cm li kesindilerge bóledi. Parallelogrammnıń perimetrin tabıń.
|
6-BILET
Ápiwayılastırıń:
y=x2-3x+5 funksiyanıń koordinata oqları menen kesilisiw noqatlarınıń koordinataların tabıń.
Birdeylikti dálilleń: 2-
Katetleri 15 cm hám 20 cm bolǵan tuwrı múyeshli úshmúyeshlik kishi katetinıń gipotenuzadaǵı proekciyasın tabıń.
Parallelogrammnıń biyiklikleri 8 cm hám 12 cm bolıp, maydanı 144 cm2 bolsa, parallelogrammnıń perimetrini esaplań.
|
7-BILET
Teńlemeni sheshiń
| 2-3x | ≤ 2 teńsizliktiń neshe pútin sheshimleri bar?
Eger b olsa, ctgα nı tabıń.
ABCD tórtmúyeshlikte: AB = CD, AD = BC, A múyesh B múyeshlikten 3 márte úlken, usı tórtmúyeshliktiń múyeshlarin tabıń.
Eger ā(-3;1) hám (3;5) bolsa, =3ā + vektordıń uzınlıǵıni esaplań
8-BILET
Teńlemeni sheshiń:
24 ≤ 6 - 3x < 36 qos teńsizliktıń eń kishi hám eń úlken pútin sheshimleri kóbeymesin tabıń.
Ápiwayılastırıń: sin(α+β) + sin( - α) sin(-β)
Katetlarinıń gipotenuzadaǵı proyeksiyaları 2 cm hám 18 cm bolǵan tuwrı múyeshli úshmúyeshlik maydanın tabıń.
Doǵanıń gradus ólshewi 720 bolǵan sektordıń maydanı 45π ge teń, sektor radiusın tabıń.
|
9-BILET
Ańlatpanı ápiwayılastırıń hám onıń san mánisin tabıń: bunda
Ápiwayılastırıń:
Teńsizlikti sheshiń: (x - 5,7)(x - 7,2)
Rombnıń úlken diagonalı 18 cm hám bir múyeshi 1200. Romb maydanın tabıń.
Doǵanıń gradus ólshewi 300 hám radiusı 7 cm bolǵan sektor hám segment maydanların tabıń.
|
|
Do'stlaringiz bilan baham: |