8- Amaliy mashg’ulot:. Elliptik tipdagi xususiy hosilali differensial tenglamani
taqribiy yechish (2-soat)
Ishdan maqsad: Elliptik turdagi tenglamaga qo‘yilgan Drixle masalasi uchun to‘r usuli.
Birinchi chegaraviy masala yoki Puasson tenglamasi:
)
,
(
2
2
2
2
y
x
f
y
u
x
u
č
(10.4')
uchun Dirixle masalasi quyidagicha qo‘yiladi G sohaning ichki nuqtalarida (10.4') tenglamani va
G- chegarasida esa
u
g
=
(x,y)
shartni kanotlantiruvchi u=u(x,y) funktsiya topilsin. Mos ravishda Ox va Oy o‘qlarida h va l
qadamlarni tanlab,
,...)
2
,
1
,
0
(
,
,...)
2
,
1
,
0
(
,
0
0
k
kl
y
y
i
ih
x
x
k
i
to‘g‘ri chiziqlar yordamida to‘r quramiz va sohaning ichki tugunlaridagi
2
2
2
2
,
y
u
x
u
hosilarni (10.3) formula asosida (10.4') tenglamani esa quyidagi chekli ayirmalar tenglamalari bilan
almashtiramiz:
ik
k
i
ik
k
i
k
i
ik
k
i
f
l
u
u
u
h
u
u
u
2
1
,
1
,
2
.
1
,
1
2
2
(10.5)
bu yerda
)
,
(
k
i
ik
y
x
f
f
(10.5) tenglama sohaning chegaraviy nuqtalaridagi
ik
и qiymatlari bilan
birgalikda
)
,
(
k
i
y
х
tugunlaridagi u(x,y) funktsiya qiymatlariga nisbatan chiziqli algebraik
tenglamalar sistemasini hosil qiladi. Bu sistema to‘g‘riburchakli sohada va l=k bo‘lganda eng sodda
ko‘rinishga keladi. Bu holda (10.5) tenglama quyidagicha yoziladi.
ik
ik
k
i
k
i
k
i
k
i
f
h
u
u
u
u
u
2
1
,
1
,
,
1
,
1
4
(10.6)
CHegaraviy tugunlardagi qiymatlar esa chegaraviy funktsiya qiymatlariga teng bo‘ladi. Agar (10.4)
tenglamada f(x,y)=0 bo‘lsa
0
2
2
2
2
y
u
x
u
u
Laplas tenglamasi hosil bo‘ladi. Bu tenglamaning chekli ayirmalar tenglamasi quyidagicha:
)
(
4
1
1
.
1
,
,
1
,
1
k
i
k
i
k
i
k
i
ik
u
u
u
u
u
(10.7)
Bu (10.6) va (10.7) tenglamalarni 10.4-rasmdagi tugunlar siemasidan foydaniladi. Bundan
buyon rasmlardarda (
i
i
y
x ,
) tugunlarni ularning indekslari bilan
(i-1,k+1)
(i-1, k+1)
h
h
(i, k+1)
h
(i,k)
(i+1,k)
(i-1,k)
(i,k)
(i+1, k-1)
(i-1,k-1)
(i,k-1)
10.4-rasm
10.5-rasm
almashtirib yozamiz. Bahzan 10.5- rasmdagi kabi tugunlar sxemasidan foydalanish qulay bo‘ladi.
Bu holda Laplas chekliayrimalar tenglamasi quydagicha yoziladi.
)
(
4
1
1
,
1
1
,
1
1
,
1
,
k
i
k
i
k
i
k
i
u
u
u
u
(10.8)
‘uasson tenglamasi uchun esa:
k
i
k
i
k
i
k
i
k
i
k
i
f
h
u
u
u
u
u
,
2
1
,
1
1
,
1
1
,
1
1
,
1
,
2
)
(
4
1
(10.8’)
Differentsial tenglamalarni ayrimalar bilan almatirish xatoligi yaoni (10.8) tenglama uchun koldik
xad
k
i,
R
quyidagicha baholanadi.
bu yerda
4
4
4
4
4
4
2
,
,
max
,
6
y
u
x
u
M
M
h
R
G
k
i
Ayrimalar usuli bilan topilgan taqribiy yechim xatoligi uchta xatoligidan kelib chiqadi:
1) differentsial tenglamalarni ayrimalar bilan
almashtiridan
2) chegaraviy shartni a’’roksimatsiya qilishdan.
3) hosil bo‘lgan ayrimali tenglamalarni taqribiy
echishlardan.
10.1.masala. Quyidagi Laplas tenglamasi
0
2
2
2
2
y
u
x
u
uchun uchlari A(0;0), B(0;1), C(1;1), D(1;0) nuqtalarda bo‘lgan kvadratga Dirixle masalasini
;
2
sin
25
;
25
;
25
);
1
(
45
x
x
u
u
x
u
y
y
u
AD
CD
BC
AB
bo‘lganda, to‘r usuli bilan 0.01 aniqlikda yechimini toping h=0,2
ECHISH. I. Yeechim sohasini h=0,2 qadam bilan kataklarga ajratamiz va sohaning chegara
nuqtalarida noomalum funktsiya qiymatlarini hisoblaymiz.
10.1-jadval
B
C
1
0.8
0.6
0.4
0.2
A
0.2
0.4
0.6
0.8
1
D
1) u(x,y) funktsiya qiymatini AB tomonda u(x,y)=45y(1-y) formula yordamida topamiz.
u(0;0)=0, u(0;0.2)=7.2, u(0;0.4)=10.8
u(0;0.6)=10.8 , u(0;0.8)=7.2, u(0;1)=0
2) BC tamonda u (x,y)=25 x
u(0.2;1)=5, u(0.4;1)=10, u(0.6;1)=15
u(0.8;1)=20, u(1,1)=25
3) CD tomonda : u(x,y)=25 u(1;0.8)=u(1;0.6)=u(1;0.4)=u(1;0.2)=25
4) AD tomonda
u(x,y) =25sin
2
x
u(0,2;0)=1.545
u(0,4;0)=5.878
u(0.6;0)=12.35
u(0,8;0)=19.021
II. Yechim soha ichidagi nuqtalarda izlanayotgan funktsiya qiymatlarini topish uchun Laplas
tenglamasi uchun chekli orttirmalarni qo‘llashdan hosil bo‘lgan
)
(
4
1
)
(
1
,
1
,
,
1
,
1
j
i
j
i
j
i
j
i
i
i
ij
u
u
u
u
y
x
u
u
formula yordamida quyidagicha topamiz.
10.2-jadval
0
5
10
15
20
25
7.2
u
13
u
14
u
15
u
16
25
10.8
u
9
u
10
u
11
u
12
25
10.8
u
5
u
6
u
7
u
8
25
7.2
u
1
u
2
u
3
u
4
25
0
1.54
5.878
12.13
15.02
)
25
021
,
19
(
4
1
);
135
,
12
(
4
1
),
878
,
5
(
4
1
);
545
,
1
2
,
7
(
4
1
8
3
4
7
4
2
3
6
3
1
2
5
2
1
u
u
u
u
u
u
u
u
u
u
u
u
u
u
),
25
(
4
1
);
(
4
1
),
(
4
1
);
8
,
10
(
4
1
10
7
4
8
11
8
6
3
7
10
7
5
2
6
9
6
1
5
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
),
25
(
4
1
);
(
4
1
),
(
4
1
);
8
,
10
(
4
1
16
11
8
12
15
12
10
7
11
14
11
9
6
10
13
10
5
9
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
)
25
20
(
4
1
);
15
(
4
1
),
10
(
4
1
);
5
2
,
7
(
4
1
15
12
16
16
14
11
15
15
13
10
14
16
9
13
u
u
u
u
u
u
u
u
u
u
u
u
u
u
Bu hosil bo‘lgan sistemani Zeydelningiteratsiya usuli bilan yechamiz.
,..
,...
,
,
)
(
)
2
(
)
1
(
)
0
(
k
i
i
i
i
u
u
u
u
Ketma –ketlikni tuzamiz va yaqinlashishni 0.01 aniqlik bilan olamiz. Bu ketma –ketliklar
elementlarini quyidagi bog‘lanishlardan topamiz:
)
021
,
44
(
4
1
);
135
,
12
(
4
1
)
878
,
5
(
4
1
);
745
,
8
(
4
1
)
1
(
8
)
(
3
)
(
4
)
1
(
7
)
1
(
4
)
(
2
)
(
3
)
1
(
6
)
1
(
3
)
(
1
)
(
2
)
1
(
5
)
1
(
2
)
(
1
k
k
k
k
k
k
k
k
k
k
k
k
k
k
u
u
u
u
u
u
u
u
u
u
u
u
u
u
),
25
(
4
1
;
(
4
1
),
(
4
1
);
8
,
10
(
4
1
)
1
(
12
)
(
7
)
(
4
)
(
8
)
1
(
11
)
1
(
8
)
(
6
)
(
3
)
(
7
)
1
(
10
)
1
(
7
)
(
6
)
(
2
)
(
6
)
1
(
9
)
(
6
)
(
1
)
(
5
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
)
25
(
4
1
);
(
4
1
),
(
4
1
);
8
,
10
(
4
1
)
1
(
16
)
(
11
)
(
8
)
(
12
)
1
(
15
)
1
(
12
)
(
10
)
(
7
)
(
11
)
1
(
14
)
1
(
11
)
(
9
)
(
6
)
(
10
)
1
(
13
)
1
(
10
)
(
5
)
(
9
k
K
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
).
45
(
4
1
);
15
(
4
1
),
10
(
4
1
);
2
,
12
(
4
1
)
(
15
)
(
12
)
(
16
)
1
(
16
)
(
14
)
(
11
)
(
15
)
1
(
15
)
(
13
)
(
10
)
(
14
)
1
(
14
)
(
9
)
(
13
k
k
k
k
k
k
k
k
K
k
k
k
k
k
u
u
u
u
u
u
u
u
u
u
u
u
u
u
Yuqoridagi formulalar yordamida yechimni topish uchun boshlang‘ich
)
0
(
i
u
qiymatlarni
aniqlash kerak bo‘ladi. SHu boshlang‘ich taqribiy yechimni aniqlash uchun u(x,y) funtsiya soha
gorizantallari buyicha tekis taqsimlangan deb hisoblaymiz. CHegara nuqtalari (0;0.2) va (1;0.2)
bo‘lgan gorizantal ichki
)
0
(
4
)
0
(
3
)
0
(
2
)
0
(
1
,
,
,
u
u
u
u
nuqtalarini, kesmani 5 ta bo‘lakka bo‘lib k
1
=(25-
7,2)/5=3,56 qadam bilan quyidagicha topamiz.
7.2
u
1
u
2
u
3
u
1
u
4
25
(0; 0.2)
(1; 0.2)
44
,
21
56
,
3
88
,
17
88
,
17
56
,
3
32
,
14
32
,
14
56
,
3
76
,
10
76
,
10
56
,
3
2
,
7
2
,
7
1
)
0
(
3
)
0
(
4
1
)
0
(
2
)
0
(
3
1
)
0
(
1
)
0
(
2
1
)
0
(
1
K
u
u
K
u
u
K
u
u
K
u
SHuningdek qolgan gorizontallarda ham qadamlarini aniqlab ichki nuqtalardagi qiymatlarini
topamiz va quyidagi boshlang‘ich yaqinlashish bo‘yicha yechim jadvalni tuzamiz:
10.3-jadval
1
0
5
10
15
20
25
0,8
7,2
10,76
14,32
17,88
21,44
25
0,6
10,8
13,64
16,48
19,32
22,16
25
0,4
10,8
13,64
16,48
19,32
22,16
25
0,2
7,2
10,76
14,32
17,88
21,44
25
0
0
1,545
5,878
12,135
19,021
25
yi/xi
0
0,2
0,4
0,6
0,8
1
Bu boshlang‘ich yaqinlashishdan foydalanib hisoblash jarayonidagi birinchi, ikkinchi va
hokazo yaqinlashishlarni aniqlash va jadvalini tuzish mumkin. Natija 0.01 aniqlik bilan hisoblangan
quyidgi yechim jadvalini topamiz:
10.4-jadval
1
0
5
10
15
20
25
0,8
7,2
8,63
11,77
15,80
20,30
25
0,6
10,8
10,56
12,64
16,14
20,40
25
0,4
10,8
10,17
12,10
15,69
20,18
25
0,2
7,2
7,20
9,88
14,34
19,64
25
y
i
/x
i
0
0,2
0,4
0,6
0,8
1
8 rem save"xLaplas.bas",a
10 PRINT" 10.1 - DASTUR "
20 PRINT" L A P L A S TENGLAMASI UCHUN"
30 PRINT" DIRIXLI MASALASINI YeCHISH"
40 DIM U(40,40),U1(40,40)
50 'DEF FNF0(X,Y)=X*0+2*Y
52 REM CHEGARA FUNKTSIYALARI:
60 DEF FNA(Y)=45*Y*(1-Y)
70 DEF FNB(Y)=25+Y*0
80 DEF FNC(X)=25*X
90 DEF FND(X)=25*X*SIN(3.141593*X/2)
100 'READ A,B,C,D,N,M,E
102 INPUT” X argument chegaralari a,b ni kiriting=”;a,b
104 INPUT” X argument kesmada bulinishlar soni N ni kiriting=”;n
106 INPUT” Y argument chegaralari c,d ni kiriting =”;c,d
108 INPUT” Y argument kesmada bo‘linishlar soni M ni kiriting=”;m
110 H=(B-A)/N : G=(D-C)/M : E=0.01 ':H1=H*H/2
120 FOR I=0 TO N :X=A+I*H
130 U(I,0)=FNC(X)
140 U(I,M)=FND(X)
150 NEXT I
160 FOR J=0 TO M :Y=C+J*G
170 U(0,J)=FNA(Y)
180 U(N,J)=FNB(Y)
182 'F0(I,J)=FNF0(X,Y)
190 NEXT J
200 FOR J=1 TO M-1 : FOR I=1 TO N-1
210 U(I,J)=U(0,J)+(U(N,J)-U(0,J))*I/N
220 NEXT I,J
230 FOR J=1 TO M-1 : FOR I=1 TO N-1
240 U(I,J)=(U(I-1,J)+U(I+1,J)+U(I,J-1)+U(I,J+1))/4'+H1*FNF0(I,J)
250 NEXT I,J
260 S=0
270 FOR J=1 TO M-1 : FOR I=1 TO N-1
280 W=ABS(U(I,J)-U1(I,J))
290 if w>s then s=w
300 next i,j
310 FOR J=1 TO M-1 : FOR I=1 TO N-1
320 U1(I,J)=U(I,J)
330 next i,j
340 if abs(w-s)>=0 then s= 230
350 FOR J=0 TO M : FOR I=0 TO N
360 PRINT using"###.####";u(i,j);
370 next i:?:next j
380 data 0,1,0,1,5,5,0.01
390 end
1 A - DASTUR
L A P L A S TENGLAMASI UCHUN
DIRIXLI MASALASINI YeCHISH
0.0000 5.0000 10.0000 15.0000 20.0000 25.0000
7.2000 10.0400 13.6000 17.3400 21.1250 25.0000
10.8000 12.7400 15.5350 18.5887 21.7184 25.0000
10.8000 12.6950 15.4675 18.5241 21.6706 25.0000
7.2000 8.9400 12.0413 16.0352 20.4317 25.0000
0.0000 1.5451 5.8779 12.1353 19.0211 25.0000
Ok
{10.1 – DASTUR }
{ L a p l a s tenglamasi uchun Dirixli masalasini yechish }
{Paskal tili dasturi }
program lab_1;
uses ctr,dos;
label 1;
var
y,x,h,a,b,c,d,g,s,w,e:real;
n,m,i,j:integer;
u1:array[0..40,0..40] of real;
u:array[0..40,0..40] of real;
function fna(y:real):real;
begin fna:=45*y*(1-y) end;
function fnb(y:real):real;
begin fnb:=25+0*y; end;
function fnc(x:real):real;
begin fnc:=25*x; end;
function fnd(x:real):real;
begin fnd:=25*x*sin(3.14159*x/2); end;
begin
{n:=5;m:=5; a:=0; b:=1; c:=0; d:=1; }
write(‘X argument chegaralari a,b ni kiriting=’); readln(a,b);
write(‘X argument kesmada bo‘linishlar soni N ni kiriting=’); readln(N);
write(‘Y argument chegaralari c,d ni kiriting=’); readln(c,d);
write(‘Y argument kesmada bo‘linishlar soni M ni kiriting=’); readln(M);
h:=(b-a)/n; g:=(d-c)/m; e:=0.01;
for i:=0 to n do
begin x:=a+i*h; u[i,0]:=fnc(x); u[i,m]:=fnd(x); end;
for j:=0 to m do
begin y:=c+j*g ; u[0,j]:=fna(y); u[n,j]:=fnb(y); end;
for j:=1 to m-1 do for i:=1 to n-1 do
begin u[i,j]:=u[0,j]+(u[n,j]-u[0,j])*i/n; end;
1: for j:=1 to m-1 do for i:=1 to n-1 do
begin u[i,j]:=(u[i-1,j]+u[i+1,j]+u[i,j-1]+u[i,j+1])/4; end;
s:=0;
for j:=1 to m-1 do for i:=1 to n-1 do
begin w:=abs(u[i,j]-u1[i,j]); if w>s then s:=w; end;
for j:=1 to m-1 do for i:=1 to n-1 do
begin u1[i,j]:=u[i,j]; end;
if (s-e)>=0 then goto 1;
for j:=0 to n do
begin
for i:=0 to m do
begin write(u[i,j]:8:3); end;
writeln;
end;
readln;
end.
10 REM 10.1 A - DASTUR
20 REM P U A S S O N TENGLAMASI UCHUN
30 REM DIRIXLI MASALASINI YeCHISH
40 REM
50 DIM U(40,40),U1(40,40)
52 DEF FNF0(X,Y)=X*0+2*Y
60 DEF FNA(Y)=45*Y*(1-Y)
70 DEF FNB(Y)=25+Y*0
80 DEF FNC(X)=25*X
90 DEF FND(X)=25*X*SIN(3.141593*X/2)
100 ‘READ A,B,C,D,N,M,E
102 INPUT”X argument chegaralari a,b ni kiriting=”;a,b
104 INPUT”X argument kesmada bulinishlar soni N ni liriting=”;n
106 INPUT”Y argument chegaralari c,d ni kiriting =”;c,d
108 INPUT”Y argument kesmada bo‘linishlar soni M ni kiriting=”;m
110 H=(B-A)/N : G=(D-C)/M : E=0.01 ':H1=H*H/2
120 FOR I=0 TO N :X=A+I*H
130 U(I,0)=FNC(X)
140 U(I,M)=FND(X)
160 FOR J=0 TO M :Y=C+J*G
170 U(0,J)=FNA(Y)
180 U(N,J)=FNB(Y)
182 F0(I,J)=FNF0(X,Y)
190 NEXT J,I
200 FOR J=1 TO M-1 : FOR I=1 TO N-1
210 U(I,J)=U(0,J)+(U(N,J)-U(0,J))*I/N
220 NEXT I,J
230 FOR J=1 TO M-1 : FOR I=1 TO N-1
240 U(I,J)=(U(I-1,J)+U(I+1,J)+U(I,J-1)+U(I,J+1))/4+H1*FNF0(I,J)
250 NEXT I,J
260 S=0
270 FOR J=1 TO M-1 : FOR I=1 TO N-1
280 W=ABS(U(I,J)-U1(I,J))
290 IF W>S THEN S=W
300 NEXT I,J
310 FOR J=1 TO M-1 : FOR I=1 TO N-1
320 U1(I,J)=U(I,J)
330 NEXT I,J
340 IF ABS(W-S)>=0 THEN 230
350 FOR J=0 TO M : FOR I=0 TO N
360 PRINT USING"###.####";U(I,J);
370 NEXT I:?:NEXT J
380 DATA 0,1,0,1,5,5,0.01
390 END
RUN
{10.1A – DASTUR }
{P u a s s o n tenglamasi uchun}
{ Dirixli masalasini yechish}
{Paskal tili dasturi }
{ XXDIF2;}
label 1;
var
y,x,h,a,b,c,d,g,s,w,e:real;
n,m,i,j:integer;
u1:array[0..40,0..40] of real;
u:array[0..40,0..40] of real;
f0:array[0..40,0..40] of real;
function fnf0(x,y:real):real;
begin fnf0:=x*0+y*0 end;
function fna(y:real):real;
begin fna:=45*y*(1-y) end;
function fnb(y:real):real;
begin fnb:=25+0*y; end;
function fnc(x:real):real;
begin fnc:=25*x; end;
function fnd(x:real):real;
begin fnd:=25*x*sin(3.14159*x/2); end;
begin
{n:=5;m:=5; a:=0; b:=1; c:=0; d:=1;}
write(‘X argument chegaralari a,b ni kiriting=’); readln(a,b);
write(‘X argument kesmada bo‘linishlar soni N ni kiriting=’); readln(N);
write(‘Y argument chegaralari c,d ni kiriting=’); readln(c,d);
write(‘Y argument kesmada bo‘linishlar soni M ni kiriting=’); readln(M);
h:=(b-a)/n; g:=(d-c)/m; e:=0.01;
for i:=0 to n do
begin x:=a+i*h; u[i,0]:=fnc(x); u[i,m]:=fnd(x); end;
for j:=0 to m do
begin y:=c+j*g ; u[0,j]:=fna(y); u[n,j]:=fnb(y); f0[i,j]:=fnf0(x,y); end;
for j:=1 to m-1 do for i:=1 to n-1 do
begin u[i,j]:=u[0,j]+(u[n,j]-u[0,j])*i/n; end;
1: for j:=1 to m-1 do for i:=1 to n-1 do
Begin u[i,j]:=(u[i-1,j]+u[i+1,j]+u[i,j-1]+u[i,j+1])/4; end;
s:=0;
for j:=1 to m-1 do for i:=1 to n-1 do
begin w:=abs(u[i,j]-u1[i,j]); if w>s then s:=w; end;
for j:=1 to m-1 do for i:=1 to n-1 do
begin u1[i,j]:=u[i,j]; end;
if (s-e)>=0 then goto 1;
for j:=0 to n do
begin
for i:=0 to m do
begin write(u[i,j]:8:3); end;
writeln;
end;
readln;
end.
O‘z-o‘zini tekshirish uchun savollar
1. Berilgan soxani to‘r bilan ko‘lash, to‘r tugunlarining turlari, tugun nuktalar aniqlash.
2. Xususiy xosilalarni chekli ayirmalar nisbati bilan almashtirishlar asosida to‘r usuli moxiyatini
tushuntiring.
3. Laplas yoki ‘uasson tenglamasi uchun Dirixle masalasining takribiy yechimi to‘r usuli
yordamida qanday topiladi?
4. Takribiy yechim xatoligini baxolash formulasini yozing.
MUSTAQIL ISHLAR UCHUN TOPSHIRIQLAR.
Quyidagi Laplas tenglamasi
0
2
2
2
2
y
u
x
u
uchun Dirixle masalasini to‘r usulida, uchlari A(0;0), B(0;1), C(1;1), D(1;0) nuqtalarda
bo‘lgan kvadratdagi taqribiy yechimni, h=0.2 qadam bilan turing.
Variant
№
u|
AB
u|
BC
u|
CD
u|
AD
1
30y
30(1-x
2
)
0
0
2
20 y
2
cos
30
x
2
cos
30
y
20x
2
3
50y(1-y
2
)
0
0
50sin x
4
20y
20
20y
2
50x(1-x)
5
0
50x(1-x)
50 y(1- y
2
)
50 x(1- x)
6
30sin
y
20 x
20y
30x(1-x)
7
30(1-y)
x
20
20 y
30(1-x)
8
30sin
y
x
30
30 y
2
50sin
x
9
40y
2
40
40
2
sin
40
x
10
50y
2
50(1-x)
0
60x(1-x
2
)
11
20 y
2
20
20y
10x(1-x)
12
y
40
40(1- x)
20y(1-y)
0
13
2
cos
20
y
30 x(1- x)
30y(1-y
2
)
20(1-x
2
)
14
30 y
2
(1-y)
50 sin
x
0
10x
2
(1-x)
15
20y
20(1-x
2
)
)
1
(
30
y
y
0
16
30(1- x
2
)
30 x
30
30
17
2
cos
30
y
30 x
2
30 y
2
cos
30
x
18
0
50 sin
x
50 y(1- y
2
0
19
y
20
20
20y
2
40x(1-x)
20
50y(1-y
20x
2
(1-x)
0
40x(1-x
2
)
21
20sin
y
30 x
30y
20x(1-x)
22
40(1- y)
x
30
30 y
40(1-x)
23
20 sin
y
x
50
50 y
2
20 sin
x
24
40
40
40y
2
40sin
)
1
(
2
x
25
30 y
2
30(1- x)
0
40 x
2
(1-x)
26
25y
2
25
25 y
20x(1-x)
27
y
15
15(1- x)
30y(1-y)
0
28
2
cos
30
y
20 x(1- x)
25y(1-y
2
)
30(1-x
2
)
29
10 y
2
(1-y)
30 sin
x
0
15x(1-x
2
)
30
25 y
25(1-x
2
)
)
1
(
30
y
y
0
Vazifa:
Quyidagi jadvalni daftaringizga chizib to’ldiring.
Bilaman
Bildim
(mavzudan olingan yangi
ma’lumotlar)
Bilishni istayman
(qiziqtirgan savollar)
O’tilgan mavzu yuzasidan savol-javob o’tkaziladi.
Do'stlaringiz bilan baham: |