4-ma’ruza. Chiziqli algebraga kirish. Vektor va matrisalar bilan ishlash. Reja



Download 1,84 Mb.
bet9/20
Sana24.04.2023
Hajmi1,84 Mb.
#931322
1   ...   5   6   7   8   9   10   11   12   ...   20
Bog'liq
4-mavzu (Vek., matr., Ch.algeb)

9-ta`rif. vektor ko’paytma qo’sh vector ko’paytma deb ataladi.
Qo’sh vector ko’paytmani xisoblashda qulay forma topish maqsadida ni bilan belgilaymiz, ya’ni
ning koordinata o’qlardagi proeksiyalarini va bilan, vektorlatr proeksiyalarini ham shunga o’xshash belgilar bilan belgilaymiz. Masalan. vektorning koordinata o’qlaridagi proeksiyalari bo’lsin. Vektor ko’paytmaning dekart koordinatalar sistemasidagi proeksiyaga asosan qo’yidagicha bo’ladi:

Ushbu vektor ko’paytmaning dekort koordinata proeksiyalarga asosan

O’ng tomondagi va proeksiyalarini o’rniga uning qiymatlarini qo’yamiz

Bu tenglikning o’ng tomoniga ni qo’shamiz va ayiramiz.

Proeksiyalari bilan berilgan vektorlarning skalyar ko’paytmasini e’tiborga olsak, ni shunday yozish mumkin: .
Shunga o’xshash ,
Endi qo’sh vektor ko’paytmani tasvirlovchi vektorni uning proeksiyalari bilan ifodalaymiz: ,
va o’rniga ularning ifodalarini qo’yib, uni

shaklda yozish mumkin. Bu tenglikdan vektor o’rniga qo’sh vektor ko’paytma olib
(9)
ekanini topamiz. Bu formuladan qo’sh vektor ko’paytma ikkita vektor ayirmasiga teng ekanini ko’ramiz: kamayuvchi vektor o’rtadagi vektorni qolgan vektorning skalyar ko’paytma ko’paytirishdan hosil bo’ladi; ayriluvchi vektor esa vektorni qolgan ikki vektorning skalyar ko’paytmasiga ko’paytirishdan hosil bo’ladi: bu qoidani vektorlarning boshqa tartibda olingan qo’sh vektor ko’paytmaga tadbiq qilamiz:
(10)
(11)
(9),(10),(11) larni hadma-had qo’shsak

Ekanini ko’ramiz, ya’ni vektorlarning doiraviy almashtirish usulda tuzilgan qo’sh vektor ko’paytmalarining yig’indisi nolga teng.
Keyingi tenglikdan ni hosil qilamiz.
Endi ko’paytmani xisoblaymiz - ni bilan belgilaymiz ekanini topamiz ni e’tiborga olsak

Bu erdan skalyar ko’paytmaning gruppalash qonuniga asosan, qo’yidagiga egamiz yoki .



Download 1,84 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   ...   20




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish