3-bosqich 304-guruh talabasi eshboltayeva maxsudaning



Download 1,04 Mb.
bet2/12
Sana23.07.2022
Hajmi1,04 Mb.
#844188
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
2 Eshboltayeva Maxsuda Yuzlik kontsentrida mustaqil ishlarni tashkil (2)

Kurs ishining maqsadi. 2- sinf matematika kursining asoslaridan biri boʻlgan 100 likka doir masalalarni yechishni oʻrganishda yangi pedagogik texnologiyalardan foydalanib oʻrganish.
Kurs ishining vazifasi. Boshlangʻich sinflarda murakkab masalalarni oʻrganishni tahlil qilish;
2-sinfda mavjud 100 likka doir murakkab masalalar turlari ustida ishlash. Uni matematik tilga oʻtkazish usullarini tahlil qilish, hamda yangi pedagogik texnologiya koʻrinishidagi didaktik oʻyinlarni masalalar yechishga joriy etish yoʻllarini izlash. Shu asoda ilgʻor pedagogi texnologiyalarini sinab k`orish.
Ishda 100 likka doir masalalarni yechishning boshlangʻich sinf oʻquvchilarining fikrlash doiralarini kengaytirishdagi ahamiyati yetarlicha asoslab berilgan va boshlangʻich sinf oʻquvchilarida murakkab masalalarni yechish malakalarini shakllantirish lozimligi haqida toʻxtalib oʻtilgan.
Masalalarning yechimlarini topish asosan bolalarning fikrlash doiralarini kengaytiradi, ularning masala yechishga boʻlgan qiziqishlarini orttiradi, undan tashqari ularning logik tafakkurlarini rivojlantirish imkonini beradi, ularda masala yechishda uchraydigan qiyinchiliklarni yengish uchun qat’iylik va matonatlilikni tarbiyalaydi.
I BOB. YUZLIK” MAVZUSIDA MASALALAR YECHISHGA OʻRGATISHNING UMUMIY MASALALARI VA YUZLIK MAVZUSIDA TARKIBLI - MURAKKAB MASALALAR USTIDA ISHLASHNING NAZARIY ASOSLARI
1.1. Yuzlik” mavzusida masalalar yechishga oʻrgatishning umumiy masalalari.

Matematikada masallar yechish nazariyani amaliyotga tadbiq qilishning eng muhim tabiiy yoʻlidir. Boshlangʻich sinf matematika kursi maqsadga muvofiq tanlangan masalalar sistemasi asosida bayon qilinadi. Bu sistemada matnli masalalar kata oʻrin egallaydi. Arifmetik amallar orasidagi mavjud mazmunni ochishda tegishli oddiy matnli masalalardan foydalaniladi. Matnli masalalar bolalarni “Shuncha katta (kichik)”, “Shuncha marta katta (kichik) soʻzlari bilan ifodalanuvchi matematik munosabatlar bilan tanishtiruvchi muhim vosita hisoblanadi. Matnli masalalar ulush tushunchasini uqib olishda, geometrik tasavvurlarni shakllantirshda, shuningdek algebraik elementlarni qarab chiqishda katta yordam beradi. Bolalarni baho, miqdor, vaqt, tezlik va masofa orasidagi mavhud bogʻlanishlar bilan tanishtirishda matnli masalalarning ahamiyati kattadir. Matnli masalalarning sodda va murakkab turlari boʻlib, sodda masalalarning ifodalanishi sistemasi kursdagi tegishli tushunchalarni singdirish mantiqiga buysundirilgan. Oddiy masalalar qatori I-sinfdan boshlab murakkab masalalar ham yechiladi. Ular ham egallangan nazariy bililarni takomillashtirish ishiga xizmat qiladi.


I-IV sinflarda berilgan maslalarni quyidagi uchta guruhga ajratish mumkin.
1. Birinchi guruh masalalar arifmetik amallarning ma`nosini ochib berishga qaratilgan. Bunday masalalarning har biri darsturga asosan konsentrlar boʻyicha mos amallarni tanishtirishga muvofiq kiritiladi.
2. Ikkinchi guruh sodda masallarga sonlar orasidagi oʻzaro xilma-xil munosabatlarni ochishga tegishli boʻlgan masalalar kiradi. Bu oʻrinda munosabat tuhsunchasi bir sonni boshqasiga boʻlganda chiqadigan boʻlinma sifatida qoʻllangan.
Boshlangʻich sinf matematikasida “teng boʻlish”, “Shuncha koʻp”(kam), “ shuncha marta katta” kabi soʻzlar bilan ifodalanishi mumkin boʻlgan sonlar orasidagi munosabatlar ustida ishlashga alohida e`tabor beriladi. Bu munosabatlarning ma`nosi ikki toʻplam elementlari oʻrtasida oʻzaro bir qiymatli moslik oʻrnatishga bogʻlangan xilma-xil mahaliy mashqlar asosida ochib beriladi. Bunday munosabatlarni ochish maqsadida matnli maslalardan keng foydalaniadi.
3. Uchinchi guruh soda masalalarga arifmetika nazariyasining ayrim yangi masallari-arifmetik amallarning komponentlari va natihalari orasidagi bogʻlanishlarni ochib beradigan masalalar kiradi. Bunday maslahatlar komponentlardan biri va amal natijasi berilgan boʻlsa, ikkinchi komponentni topishdan iborat boʻlgan masallardir.
Uchinchi guruh maslalarga quyidagilarni koʻrsatish mumkin.

  1. Berilgan yigʻindi va qoʻshivchiga koʻra ikkinchi qoʻshiluvchini topishga doir masalalar.

  2. Ayirma va ayriluvchiga koʻra kamayuvchini topishga doir masallar .

  3. Ayirma va kamayuchiga koʻra ayriluvchini topishga doir masalalar.

  4. Koʻpaytuvchilardan biri va koʻpaytmaga koʻra ikkinchi koʻpaytuvchini topishga doir masalalar.

  5. Boʻlinma va boʻluvchiga koʻra boʻlinuvchini, boʻluvchiga koʻra boʻluvchini topishga doir masalalar.

100 lik ichidagi sodda va murakkab masalalar bolalarning fikrlash qobiliyatlarini rivojlantirishning eng samarali vositasi boʻlib, odatda, oʻz ichiga “yashiri jumboqni” oladi. Bu jumboqni qidirish masala yechuvidan analiz va sintezga mustaqil murojaat qilish, faktlarni taqqoslash, umumlashtirish va hokazolarni talab qiladi.
Bilishning bu usullarini oʻrganish matematika oʻqitishning muhim maqsadlaridan biri hisoblanadi.
Shunday qilib, oʻquvchilar 100 lik ichidagi matnli masalalar yechish orqali matematik qonuniyatlarni amalda tadbiq etish, shuningdek ba`zi fizik tushunchalarni oʻzlashtiradilar.
Amerikalik mashhur matematik D. Raya oʻzining “Как решать задачи” nomli kitobida masalalarni qanday yechishning quyidagi rejasini mohirlik bilan tuzib bergan:

  1. Masalaning qoʻyilishini tushuntirish. Masalada nima berilgan, nima ma`lum, nima nomalum, ya`ni uning sharti nimalardan iborat ekanligini tushunib yetish. Berilganlar noma`lumni topish uchun yetarlimi? Masalalarning shartini qismlarga ajrating va ularni yozishga harakat qiling.

  2. Masalani yechish rejasini tuzing. Berilganlar bilan nomalum orasidagi bogʻlanishni topish lozim. Agar bu bogʻlanish birdaniga topish mumkin boʻlmasa, u holda yordamchi maslalarni qarab chiqish foydalidir. Shundan soʻng masala rejasini tuzishga kirishish mumkin. D. Paya masala rejasini tuzishda quyidagilarga e`tibor berishni talab qiladi: Siz oldin ham shunga oʻxhsash maslaga duch kelganmisiz? Yechishda foydali boʻlgan teoremalarni bilasizmi?

Masaladagi noma`lumni chuqurroq oʻrganishning xuddi shunday yoki shunga oʻxhsash maslani eslashga harakay qiling. Berilganlarning hammasidan foydalanasizmi?

  1. Masala rejasini amalga oshirish. Masalani yechish rejasini amalga oshirishda oʻzingizning har bir qadamingizni nazorat qilib boring. Siz uchun tanlangan qadamingiz ma`qulmi?

  2. Orqaga nazar tashlash (topilgan yechimni oʻrganish) Natijani tekshirish mumkinmi? (emasligi) yechishning borishinichi? Bu masani boshqacha yoʻl bilan topish mumkin emasmi? Uni bir qarashdan aniqlashning iloji bormi? Olingan natijani yoki yechish usulini boshqa bir masalani yechishda foydalanish mumkin emasmi? mashhur matematik D. Rayaning bu koʻrsatmalarini ilgʻor oʻqituvchi oʻzlarining mehnat faoliyatlarida tadbiq etib, yaxshi natijalarini qoʻlga kiritmoqdalar. D. Payaning tavsiyasiga koʻra masala rejasini quyidagicha bayon qilsa boʻladi:

  1. Masalaning matnini tahlil qilish.

  2. Masala shartini sxema asosida yozish.

  3. Masalaning yechimini izlash, yechimning rejasini tuzish.

  4. Tuzilgan sonli ifodaning qiymatini hisoblang.

  5. Hisoblash natijasini muhokama qilish, ya`ni masalaning savoliga javob olish.

  6. Olingan javobni tekshirish.

Masala mantini tahlil qilish koʻp maqsadli ish boʻlib quyidagicha tahlil qilish mumkin:
1. Matn tahlili

  1. masala yechishga kirishishdan oldin oʻquvchi masalaning shartini puxta oʻzlashtirib olishi shart.

Masala matnini tahlil qilishdan maqsad–masalaning mazmunini puxta oʻzlashtirishdir.

  1. Oʻquvchi masala matnini tahlil qilish jarayonida uning sharti va tahlilini ajrata bilishi kerak. Bu ish ham oʻquvchi uchun uncha oson emas. Agar masala 1 amal bilan yechilsa uncha qiyin emas.

  2. Masalaning shartida barcha berilganlarni aniqlash va ularni matematik “tilga” oʻtkazish zarur. Bunda ham ba`zi qiyinchiliklarga duch kelish mumkin. Shu oʻrinda quyidagi masalani koʻrib chiqaylik:

“Ikki shahar orasidagi masofa 390 km boʻlib, bu shaharlardan bir-biriga qarab ikki aftobus yoʻlga chiqdi. Ulardan biri 60 km va ikkinchisi 70 km tezlik bilan harakatlangan. Shartga koʻra, masofa 390 km, tezliklari 60 km va 70 km boʻlgan. Avtobuslar uchrashguncha bir xil vaqtda yoʻlda boʻlgan, bir vaqtda joʻnab uchrashguncha yurgan, degan shart bilan ifodalangan. Berilganlar aniqlangandan keyin masalaning soʻrogʻi aniqlanib, yechish rejasini tuzishga kirishish mumkin.
2. Masalaning shartini izlash. Masalalaning sharitga koʻra chizma, sxema, rasmlar va boshqalarni tuzish asosiy maqsad emas. Masala shartini izohlashning bir koʻrinishlari mavjud boʻlib, masala mazmunini matematik tavsiflashda oʻquvchilarga turli darajada yordamlashadi.
a) Masala sharitni qisqacha yozish. Masala shartining qisqacha yozishning aniq bir formasi mavhud emas. Qisqacha yozish miqdorlar va masalada mos sonli ma`lumotlar orasidagi bogʻlanishlarni koʻrsatmali tasvirlab beradi. Bu yozuv boʻyicha oʻquvchi masala shartini mustaqil aytib berish imkoniga ega boʻladi.
100 lik ustida masala yechimini izlashga oʻrganish ikki bosqichda olib boriladi. Dastlab oʻquvchilar bir amalli sodda masalalarni yechish usullarini oʻrganadilar. Bunday masalalar yechimini topish malakasi shundan iboratki, oʻquvchi masalalaning shartida berilgan son ma`lumotlarini arifmetik amallar bilan bogʻlaydi. M: Avtobusning tezligi soatiga 80 km, velosipedning tezligi undan 4 marta kam. Velosipedning tezligini toping.
Masalada ikki miqdor avtomabil tezligi bilan velosipedning tezligi oʻzaro marta ham munosabat bilan bogʻlangan. Bu munosabatlardan masala yechimini izlash koʻpaytirish amalini tanlashga olib keladi. Shunday qilib sodda masalalar yechimini izlashga oʻrgatish oʻquvchilarda u yoki bu munosabatlarga mos keluvchi arifmetik amallarni aniqlash malakalarini shakllantirishdan iborat.
Bir necha amallar bilan yechiladigan murakkab masalalar toʻplamida yechishni izlashga oʻrgatish birmuncha yuqori saviyada amalga oshiriladi. Bola sodda masalani yechish malakasiga ega boʻlgani uchun murakkab masala tarkibidagi sodda masalalarni koʻra oladi va uni ketma-ket yechish bilan murakkab masalani yechadi. Murakkab masalalarni yechishga kirishishdan oldin ularni guruhlarga boʻlib, soʻngra yechimini izlash metodlarini tanlash va tadbiq etishga kirishish maqsadga muvofiqdir.



Download 1,04 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish