5-TA’RIF: Diagonal elеmеntlaridan boshqa barcha elеmеntlari nolga tеng bo‘lgan ( аіј =0, і j ) kvadrat matritsa diagonal matritsa deyiladi.
Diagonal matritsaning diagonal elementlari nolga ham teng bo‘lishi mumkin.
Masalan,
diagonal matritsalar bo‘ladi.
6-TA’RIF: Barcha diagonal elеmеntlari аіi =1 bo‘lgan n-tartibli diagonal matritsa n-tartibli birlik matritsa yoki qisqacha birlik matritsa deyiladi.
Odatda n-tartibli birlik matritsa En yoki qisqacha E kabi belgilanadi. Masalan,
,
mos ravishda ikkinchi va uchinchi tartibli birlik matritsalardir.
7-TA’RIF: Barcha elеmеntlari nolga tеng (аі ј =0) bo‘lgan ixtiyoriy m×n tartibli matritsa nol matritsa deyiladi.
m×n tartibli nol matritsa О m×n yoki qisqacha О kabi belgilanadi. Masalan,
O2×3 = , O3×2 = , O3×3 = O3 =
ko‘rsatilgan tartibli nol matritsalar bo‘ladi.
1.2.Matritsalar ustida amallar.
Endi matritsalar ustida algebraik amallar kiritib, matritsalar algebrasini hosil etamiz.
8-TA’RIF: Ixtiyoriy tartibli Аm×n =(аij) matritsaning istalgan songa ko‘paytmasi dеb Cm×n ={ аij} kabi aniqlanadigan matritsaga aytiladi.
Bunda A matritsaning songa ko‘paytmasi A deb belgilanadi. Masalan,
.
9-TA’RIF: Bir xil tartibli Аm×n =(аij) va Bm×n =(bij) matritsalar yig‘indisi dеb elеmеntlari сij = аij + bij kabi aniqlanadigan Cm×n =(cij) matritsaga aytiladi.
Bunda A va B matritsalarning yig‘indisi A+B ko‘rinishda belgilanadi va ularning mos elementlarini qo‘shish orqali hisoblanadi. Masalan,
matritsalar uchun
.
Matritsalarni songa ko‘paytirish va o‘zaro qo‘shish amallari quyidagi qonunlarga bo‘ysunishi bevosita ularning ta’riflaridan kelib chiqadi:
I. A+B=B+A (qo‘shish uchun kommutativlik qonuni);
II. А+(В+С) = (А+В)+С (qo‘shish uchun assotsiativlik qonuni);
III. (А+В) = А + В , ( + )А = А + А (distrubutivlik qonuni)
Bundan tashqari yuqoridagi ta’riflar orqali bu amallar ushbu xossalarga ham ega bo‘lishini ko‘rsatish qiyin emas:
А + О = А , А+А =2А, 0 А = О , О = О.
10-TA’RIF: Bir xil tartibli Аm×n =(аij) va Bm×n =(bij) matritsalar ayirmasi dеb Аm×n va (–1) Bm×n matritsalarning yig‘indisiga, ya’ni Аm×n+(–1)Bm×n matritsaga aytiladi.
Bunda A va B matritsalarning ayirmasi A–B ko‘rinishda belgilanadi va ularning mos elementlarini o‘zaro ayirish orqali hisoblanadi. Masalan,
matritsalar uchun
.
11-TA’RIF: Аm×р=(aij) vа Вp×n=(bij) matritsalarning ko‘paytmasi dеb shunday Сm×n=(cij) matritsaga aytiladiki, uning cij elеmеntlari ushbu
yig‘indilar kabi aniqlanadi.
Shunday qilib, Аm×р=(aij) vа Вq×n=(bij) matritsalar uchun p=q, ya’ni A matritsaning ustunlari soni B matritsaning satrlari soniga teng bo‘lgandagina ularning ko‘paytmasi mavjud bo‘ladi va AB kabi belgilanadi. Bunda AB=Сm×n=(cij) matritsaning satrlar soni m birinchi A ko‘paytuvchi matritsa, ustunlar soni n esa ikkinchi B ko‘paytuvchi matritsa orqali aniqlanadi. Bundan tashqari AB=Сm×n=(cij) ko‘paytma matritsaning cij elеmеnti A matritsaning i – satr elеmеntlarini B matritsaning j-ustunidagi mos elеmеntlariga ko‘paytirib, hosil bo‘lgan ko‘paytmalarni qo‘shish orqali hisoblanadi. Bu “satrni ustunga ko‘paytirish” qoidasi deb aytiladi. Masalan,
matritsalar uchun m=3, p=q=2, n = 2 bo‘lgani uchun ularning ko‘paytirish mumkin va ko‘paytma matritsa АВ=С3х2 quyidagicha bo‘ladi:
.
Matritsalar ko‘paytmasi uchun АВВА, ya’ni kommutativlik qonuni o‘rinli
bo‘lmaydi. Masalan, Аm×qВq×n=Cm×n ko‘paytma mavjud, ammo Вq×n Аm×q ko‘paytma har doim ham mavjud emas va mavjud bo‘lgan taqdirda, ya’ni n=m holda ham ular teng bo‘lishi shart emas. Masalan,
matritsalar uchun АВВА, chunki
.
Matritsalar ko‘paytmasi va yig‘indisi quyidagi qonunlarga bo‘ysunadi hamda ushbu xossalarga ega bo‘ladi:
I. А(ВС)=(АВ)С , (А)В=А(В) (ko‘paytirish uchun assotsiativlik qonuni);
II. А(В+С) = АВ + АС (ko‘paytirish va qo‘shish amallari
(А+В)С = АС + ВС uchun distributivlik qonunlari);
III. АЕ = ЕА = А , О·А = О, A·O = О , 0·A= О .
Bunda E va О mos ravishda tegishli tartibli birlik va nol matritsalarni ifodalaydi.
Matritsa ko‘paytmasi ta’rifidan ko‘rinadiki, har qanday n-tartibli A kvadrat matritsani o‘ziga–o‘zini ko‘paytirish mumkin va natijada yana n-tartibli kvadrat matritsa hosil bo‘ladi.
12-TA’RIF: A kvadrat matritsani o‘zaro m marta (m – birdan katta ixtiyoriy natural son) ko‘paytirish natijasida hosil bo‘lgan kvadrat matritsa A matritsaning m- darajasi deyiladi.
A matritsaning m- darajasi Am kabi belgilanadi. Bunda A0=E va A1=A deb olinib, Am daraja ixtiyoriy nomanfiy butun m soni uchun aniqlanadi. Bu holda Am daraja
ta’rifdan uning quyidagi xossalari bevosita kelib chiqadi (m,k-natural sonlar, λ-haqiqiy son):
Shunday qilib, har qanday kvadrat matritsa uchun natural darajaga ko‘tarish amalini kiritish mumkin ekan. Masalan,
Shuni ta’kidlab o‘tish kerakki, 5-xossaning teskarisi o‘rinli emas, ya’ni Am=О tenglikdan har doim ham A=О ekanligi kelib chiqmaydi. Masalan,
Kelgusida matritsani darajaga ko‘tarish amalini ixtiyoriy m butun son uchun umumlashtiramiz.
13-TA’RIF: B=(bij) matritsa A=(aij) matritsaning transponirlangani deyiladi, agar i va j indekslarning barcha mumkin bo‘lgan qiymatlarida aij=bji shart bajarilsa.
A matritsaning transponirlangani AT kabi belgilanadi. Agar A matritsa m×n tartibli bo‘lsa, uning transponirlangani AT n×m tartibli bo‘ladi.Masalan,
Matritsani transponirlanganini topish transponirlash amali deyiladi va u quyidagi xossalarga ega bo‘lishini ko‘rsatish mumkin:
1. (AT)T=A ; 2. (λA)T=λAT (λ– ixtiyoriy haqiqiy son);
3. (A±B)T= AT±BT ; 4. (A·B)T= BT·AT .
14-TA’RIF: Agar A kvadrat matritsa uchun AT=A bo‘lsa, u simmetrik matritsa, AT= –A bo‘lganda esa kososimmetrik matritsa deb ataladi.
Ta’rifdan har qanday simmetrik matritsaning elementlari aij= aji , kososimmetrik matritsaning elementlari esa aij=– aji shartni qanoatlantirishi bevosita kelib chiqadi. Bundan kososimmetrik matritsaning barcha diagonal elementlari nolga teng bo‘lishi kelib chiqadi.
Masalan,
matritsalardan A simmetrik, B kososimmetrik bo‘ladi.
1.3.Matritsalarning iqtisodiy tadbiqlari.
Ushbu mavzu nihoyasida matritsalarning iqtisodiy ma’nosi va tatbiqlarini ifodalovchi misollar kеltiramiz.
Do'stlaringiz bilan baham: |