11-mavzu: Chiziqli fazoning ta’rifi va misollar. Chiziqli fazoning olchovi va bazisi. Chiziqli fazo elementini basis elementlari boyicha yoyish. Chiziqli fazoning qism fazolari. Evklid fazosining ta’rifi


- ta’rif. Agar tenglik oʻrinli boʻlsa, u holda element elementlarning chiziqli kombinatsiyasidan iborat deyiladi. 4- ta’rif



Download 1,34 Mb.
bet3/11
Sana29.06.2022
Hajmi1,34 Mb.
#717499
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
Yigitaliyev Fazliddin Mustaqil ish TARTIB RAQAMI 22

3- ta’rif. Agar tenglik oʻrinli boʻlsa, u holda element elementlarning chiziqli kombinatsiyasidan iborat deyiladi.
4- ta’rif. Agar koeffitsiyentlardan hech boʻlmaganda bittasi noldan farqli boʻlganda tenglik oʻrinli boʻlsa, u holda elementlar chiziqli bogʻliq deyiladi.
Agar tenglik koeffitsiyentlardan barchasi nolga teng boʻlgandagina oʻrinli boʻlsa, u holda - elementlar chiziqli erkli , aks holda - elementlar chiziqli bogliqli deyiladi . Bu yerda, -chiziqli fazoning nol elementi.
5- ta’rif. Agar chiziqli fаzoda ta chiziqli erkli elementlar mavjud boʻlib, har qanday ta element chiziqli bogʻliqli boʻlsa, u holda chiziqli fаzoning oʻlchovi ga teng deyiladi.
6- ta’rif. oʻlchovli chiziqli fаzoda har qanday ta chiziqli erkli vektorlar sistemasi bu fazoning bazisi deyiladi.
Odatda bazis vektorlar sistemasi kabi belgilanadi.Masalan, darajasi dan oshmaydigan barcha koʻphadlar toʻplami chekli oʻlchovli, yaʻni ( ) oʻlchovli chiziqli fazo tashkil qiladi. Bu fazoning bazisini vektorlar sistemasi tashkil qiladi.
10- misol. Barcha ikkinchi tartibli matritsalarning chiziqli fazosi
berilgan boʻlsin. Bu chiziqli fazoning bazisi va oʻlchamini toping.
Yechish. Bu fazoning bazislaridan biri sifatida quyidagi matritsalar sistemasini olish mumkin.

Chunki ixtiyoriy 2-tartibli matritsani bu matritsalarning chiziqli kombinatsiyasi orqali quyidagicha yozish mumkin

matritsalar sistemasining chiziqli erkliligini koʻrsatamiz. Buning uchun quyidagi tenglikni qaraymiz:
. Bu tenglik faqat va faqat bajarilsagina oʻrinli boʻlgani uchun matritsalar sistemasi fazoning bazisi hisoblanadi. Bundan fazoning oʻlchovi 4 ga tengligi ham kelib chiqadi.

Download 1,34 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish