1 Свойства и структура алгоритма



Download 1,14 Mb.
bet10/12
Sana13.04.2022
Hajmi1,14 Mb.
#548151
1   ...   4   5   6   7   8   9   10   11   12
Bog'liq
Алгоритм k средних

2.4.3 Реализация 3


Исследование масштабируемости алгоритма k-means в зависимости от количества используемых процессов было проведено в статье Кумара[12]. Исследование происходило на суперкомпьютере Jaguar - Cray XT5[13]. На момент экспериментов данный суперкомпьютер имел следующую конфигурацию: 18,688 вычислительных узлов с двумя шестнадцатиядерными процессорами AMD Opteron 2435 (Istanbul) 2.6 GHz, 16 GB of DDR2-800 оперативной памяти, и SeaStar 2+ роутер. Всего он состоял из 224,256 вычислительных ядер, 300 TB памяти, и пиковой производительностью 2.3 petaflops.
Реализация алгоритма была выполнена на языке программирования C с использованием MPI.
Объем данных составлял 84 ГБ, количество объектов (d-мерных векторов) n равнялось 1,024,767,667, размерность векторов d равнялась 22, количество кластеров k равнялось 1000.
На рис. 8 показана зависимости времени работы алгоритма кластеризации k-means в зависимости от количества используемых процессоров. Можно отметить, что время, затраченное на чтение данных и запись результатов кластеризации, практически не изменяется с увеличением количества задействованных процессоров. Время же работы самого алгоритма кластеризации уменьшается с увеличением количества процессоров.

Рис. 8. Зависимости времени работы алгоритма кластеризации k-means в зависимости от количества используемых процессоров (из работы: Kumar etc. 2011).
Также было произведено самостоятельное исследование масштабируемости алгоритма k-means. Исследование производилось на суперкомпьютере "Blue Gene/P"[14].
Набор и границы значений изменяемых параметров запуска реализации алгоритма:

  • число процессоров [1, 2, 4, 8, 16, 32, 64, 128, 256, 512];

  • количество объектов [5000, 10000, 25000, 50000].

Был использован набор данных Dataset for Sensorless Drive Diagnosis Data Set[15] из репозитория Machine learning repository[16].
Исследуемый набор данных содержит векторы, размерность которых равна 49. Компоненты векторов являются вещественными числами. Количество кластеров равно 11. Пропущенные значения отсутствуют.
Для исследования масштабируемости алгоритма была использована реализация на языке C с использованием MPI[17]. Код можно найти здесь: https://github.com/serban/kmeans. Данная реализация предоставляет возможность распараллеливать решение задачи с помощью технологий MPI, OpenMP И CUDA. Для запуска MPI-версии программы использовалась цель "mpi_main" Makefile.
На рис. 9 показана зависимости времени работы алгоритма кластеризации k-means в зависимости от количества используемых процессоров (использовались логарифмические оси). Разными цветами помечены запуски, соответствующие разным количествам объектам, участвующих в кластеризации. Можно видеть близкое к линейному увеличение времени работы программы в зависимости от количества процессоров. Также можно видеть увеличение времени работы алгоритма при увеличении количества объектов.

Рис. 9. Зависимости времени работы алгоритма кластеризации k-means в зависимости от количества используемых процессоров.
На рис. 10 показана эта же зависимость, только в трехмерном пространстве. По аналогии с рис. 9, были использованы логарифмические оси. Как и в случае двумерного рисунка, можно видеть близкое к линейному увеличение времени работы программы.

Рис. 10. Зависимости времени работы алгоритма кластеризации k-means в зависимости от количества используемых процессоров.

Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish