1. Qoldiqli bo’lish haqida teorema va isboti. Qoldiqli bo’lish haqidagi teoremadan kelib chiqadigan natijalar



Download 37 Kb.
Sana28.06.2022
Hajmi37 Kb.
#715023
Bog'liq
foydali-fayllar uz qoldiqli-bo0lish


Qoldiqli bo`lish

Reja:



1.Qoldiqli bo’lish haqida teorema va isboti.
2.Qoldiqli bo’lish haqidagi teoremadan kelib chiqadigan natijalar .
3.Kompleks sonlar maydonining izomorfligi haqidagi teorema.

  1. Теоrema. А- butunlik sohasi va g esa A[x] dagi bosh koeffisienti А da teskarilanuvchi bo`lgan ko`phad bo`lsin. U holda har bir fAx da shunday yagona juft q r  Ax ko`phadlar mos qo`yiladiki, ular uchun

f = q g + r degr < degg (1)

bo`ladi.

Isboti. f=a0Xn+a1Xn-1+...+ an , g = b0Xm+b1Xm-1+...+ bm bo`lsin, bunda a0b00. n bo`yicha matematik induksiya metodini qo`llaymiz. Agar n = 0 va m = degg  degf = 0  u holda q = 0 va r = f deb olamiz agar n = m = 0 bo`lsa u holda r = 0 va q = a0b0 deb olamiz . Faraz qilaylik, teorema darajasi n dan kichik darajali ko`phadlar uchun isbitlangan bo`lsin (n  0) .Quyida m  n bo`lsin, aks holda q = 0 va r = f deb olamiz. Bu holda


f = a0b0-1Xn-mg + f1
deb olamiz bunda degf1 < n bo`ladi.Induktiv farazimizga ko`ra shunday q1
va r1 topish mumkinki ular uchun f1= q1g + r1 bunda degr1 m, q = a0b0-1xn-m + q1 deb olsak, biz f uchun (1) ifodaga kelamiz. Endi bo`linma q va qoldiq r ni yagona ekanligini isbotlaylik: Faraz qilaylik qg + r = f = q1g1 + r1 bo`lsin. U holda (q1-q)g = r-r1 bo`ladi. Ravshanki u holda deg(r-r1) = deg(q1-q) + degg bo`ladi. Bu esa faqat r va r1 larni olishimizga ko`ra r1 = r ва q1= q bo`lgandagina bo`lishi mumkin.
Demak  bo`linma q va qoldiq r larni koeffisientlari ham А butunlik sohasida yotadi , ya`ni fgA[x] ekanligidan qrА[x] bo`ladi.
Natija. .P maydon ustidagi ko`phadlar halqasini barcha idеallari bosh idеallardir .
Isboti . T-P[X] halqadagi noldan farqli idеali bo`lsin. T da yotuvch minimal darajali t = t(X) ko`phadni tanlab olamiz. Agar f Т dagi  kophad bo`lsa u holda t ga qoldiqli bo`lish bizga quyidagi tenglikni beradi: f = qt + r  degr  degt
Р ---maydon bo`lgani uchun t(X) ni bosh koeffitsеntini tеskarilanuvchi bo`lishligini talab qilish shart emas. Yuqoridagi tеnglikdan rT chunki ftqt-lar Т ideolning elementlaridir.
t ni tanlab olishimizga ko`ra r = 0 bo`ladi .Demak, f(X) t(X) gab o`linadi va Т= (t) = tP[X] ya`ni Т ideal t(X) gab o`linuvchi ko`phadlardan tuzilgan.
6- Теоrema . Kompleks sonlari maydoni C R[X]/(X2+1)R[X] factor halqaga isomorf bo`ladi.
Isboti. Ravshanki  C = R[i]  R[X]/I bunda I={fR[X]/f(i)=0} Agar (ab)(0,0) bo`lsa  a+bi0 bo`ladi va i2+1=0 ekanligidan X2+1  I u holda 5- теоrema natijasiga ko`ra I=(X2+1)R[X] kelib chiqadi. R[X]/I factor halqa elementlari (a+bX)+I qo`shni sinflar bo`ladi. аbR lar uchun a+bi(a+bX)+I moslik C va R[X]/I faktor halqalar o`rtasida isomorfzimni ifodalaydi.
Adabiyotlar


1.Кострикин А.И. Введение в алгебру.Учебник.М.Наука,1977г.
2.Ҳожиев Ж., Файнлейб.Ф.С. Алгебра ва сонлар назарияси курси. Т. 2001 й.
3.Курош Ф.Г. Олий алгебра курси. Т.Укитувчи . 1976 й..
4.Фадеев Д.К.,Соминский И.С.Сборник задач по высшей алгебре. М.Наука .1976 г.
5. Гелфанд И.М. Лекции по линейной алгебре. http://www.mcmee.ru, http://lib.mexmat. ru.
6. Курош А.Г. Курс высшей алгебре http://www.mcmee.ru, http://lib.mexmat. ru.
Download 37 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish