4. ORIGINAL - tasvir jadvali.
f(t)
|
F(t)= e-ptf(t)dt
|
1. 1
2. sinat
3. cosat
4. cosa(t-t0)
5. e-at
6. shat
7. chat
8. e-ltsinat
9. e-ltcosat
10. tn
11. tsinat
12. tcosat
13. te-lt
14. (sinat-atcosat)/2a3
15. tnf(t)
16. f(t)dt
17.
18. f(t-t0)
19. f¢(t)
20. f¢¢(t)
21. f¢¢¢(t)
22. f(n)(t)
|
1. 1/p
2. a/(p2+a2)
3. p/(p2+a2)
4. pe-pto/(p2+a2)
5. 1/p+a
6. a/(p2-a2)
7. p/(p2-a2)
8. a/[(p+l)2+a2]
9. (p+l)/[(p+l)2+a2]
10. n!/pn+1
11. 2pa/(p2+a2)2
12. -(a2-p2)/(p2+a2)2
13. 1/(p+l)2
14. 1/(p2+a2)2
15. (-1)ndnF(t)/dtn
16. F(p)/p
17. F(t)dt
18. e-ptoF(t)
19. tF(t)-f(0)
20. t2F(t)-[tf(0)+f¢(0)]
21. t3F(t)-[t2f(0)+tf ¢(0)+f¢¢(0)]
22. tnF(t)-[tn-1f(0)+tn-2f¢(0)+...+
+t f(n-2)(0)+ f(n-1)(0)]
|
Quyidagi funksiyalarning F(t) tasvirni toping.
1. f(t)=2+sin3t 2. f(t)=Sint×cost 3. f(t)=3e2t 4. f(t)=te3t
5. f(t)=ch4t-sht 6. f(t)=2tcos3t 7. f(t)=sin24t 8. f(t)=cos22t
9. f(t)=2t5+3 10. f(t)=4t-cos2t
Quyidagi F(t) tasvir funksiyalardan f(t) original funksiyalarni toping.
11. F(t)= 12. F(t)= 13. F(t)=
14. F(t)= 15. F(t)= 16. F(t)=
17. F(t)= 18. F(t)= 19. F(t)= 20. F(t)=
Operatsion xisobning differensial tenglamalarni yechishga tadbiqi.
O’zgarmas koeffitsientli chiziqli differensial tenglama berilgan bo’lsin:
x(n)(t)+a1x(n-1)(t)+...+ an-1x¢(t)+ anx(t)=f(t) (1)
bu tenglamaning x(0)=x0, x¢(0)=x0¢, . . . , x(n-1)(0)=x0(n-1) (2)
boshlang’ich shartlarni qanoatlantiruvchi xususiy yechimni topish talab qilinsin. (1) ning har ikkala tomonidagi ifodalardan tasvirlarga o’tsak,natijada
j(t)X(t)-y(t)=F(t) (3) yoki
x(t)×[ antn+an-1tn-1+...+a1t+a0] =
=an[tn-1x0+tn-2x0¢+...+x0(n-1)]+an-1[tn-2x0+tn-3x0¢+...+x0(n-2)]+. . .
. . . + a2[tx0+x0¢]+a1x0+F(t) (3*)
tenglama hosil bo’ladi. (3) va (3*) larga yordamchi yoki tasvirlovchi yoki operator tenglama deyiladi.
(3)ni X(t) tasvirga nisbatan yechib so’ngra originalga o’tsak (1) tenglamaning (2) shartlarni qanoatlantiruvchi yechimi kelib chiqadi.
Misollar yechganda quyidagi formulalardan foydalanamiz.
x¢(t) ¬¸ tF(t)-x(0) ;
x¢¢(t) ¬¸ t2F(t)-[tx(0)+x¢(0)]
(*) x¢¢¢(t) ¬¸ t3F(t)-[t2x(0)+tx¢(0)+x¢¢(0)]
x1V(t) ¬¸ t4F(t)-[t3x(0)+t2x¢(0)+tx¢¢(0)+x¢¢¢(0)]
Misol. x(0)=0 boshlang’ich shartni qanoatlantiruvchi
dx/dt+x=1 differensial tenglamani yechimi topilsin.
Yechish: xt(t)+x(t)=1
tenglamani ikki tomonini e-tt ga ko’paytirib, [0;¥) oraliqda t bo’yicha integrallab. Laplas integraliga olib kelamiz va tasvir funktsiya F(t) ni topamiz:
e-tt[xt(t)+x(t)]dt = e-ttdt ,
e -ttxt(t)dt+ e -ttx(t)dt=1/t
tF(t)-x(0)+F(t)=1/t bu yerda x(0)=0.
F(t)(t+1)=1/t ; F(t)=1/[t(t+1)]=1/t-1/(t+1)
Tasvir jadvalidan F(t) -¸®1-e-t yoki
x(t)=1-e-t .
Misol. y(0)=yt(0)=0 boshlang’ich shartni qanoatlantiruvchi
ytt+9y=1 ( y=f(t) )
differensial tenglamani yeching.
Yechish: ytt+9y=1 tenglamani ikki tomonini e-tt ga ko’paytirib, [0;¥) oraliqda t bo’yicha integrallab Laplas integraliga olib kelamiz va tasvir funktsiya F(t) ni topamiz:
e-txyttdx +9 e-txydx= e-txdx
t2F(t)+ty(0)-yt(0)+9F(t)=1/t bu yerda y(0)=0 , yt(0)=0.
t2F(t)+9F(t)=1/t ; F(t)=1/t(t2+9)=1/9t - t/9(t2+32)
Tasvir jadvalidan
1/t-¸®1 , t/(t2+32) -¸® cos3t
Demak
F(t)=1/9×1/t-1/9× t/(t2+32) -¸®1/9 -1/9×cos3t
yoki
y=1/9 -1/9×cos3t.
bu berilgan differensial tenglamani yechimi.
Misol. x¢¢¢(t)- x¢(t)=0 (4) tenglamaning
x(0)=3 ; x¢(0)=2 ; x¢¢(0)=1 (5)
boshlang’ich shartlarni qanoatlantiruvchi yechimini toping.
Avval operator tenglamasini tuzamiz. Buning uchun (4) ning chap tomonidan (*) ga ko’ra tasvirga ottamiz:
[t3F(t)-( 3t2+2t+1)]-[tF(t)-3]=0 Þ (t3-t)F(t)= 3t2+2t+1-3
(t3-t)F(t)= 3t2+2t-2 Þ F(t) = Þ
ni eng sodda kasrlarga ajrataylik :
= = Þ
3t2+2t-2 = A(t2-1)+Bt(t+1)+Ct(t_1)
3t2+2t-2 = At2-A+Bt2+Bt+Ct2_Ct .
t2 : A+B+C=3
t : B-C=2 Þ A=2 ; B=3/2 ; C=-1/2
t0 : -A=-2
Shunday qilib F(t)= 2/t+3/2 ×1/(t-1) - 1/2 ×1/(t+1)
Endi jadvalga kotra originallarga o’tsak, differensial tenglamaning javobi kelib chiqadi:
x(t)=2×1+3/2×et-1/2×e-t=2+3/2×et-1/2×e-t .
Misol. y¢¢(t)-2y¢(t)-3y(t)=e3t ya’ni y¢¢-2y¢-3y=e3t differensial tenglamaning y(0)=0 ; y¢(0)=0 boshlang’ich shartni qanoatlantiruvchi xususiy yechimini toping.
Yechish. Original-tasvir jadvaliga ko’ra
t2F(t)-[ty(0)+y¢(0)]-2[tF(t)-y(0)]-3F(t)=
t2F(t)- 2tF(t) -3F(t)= F(t)(t2-2t-3)= Þ F(t)=
1=A(t+1)+B(t+1)(t-3)+C(t-3)2
1=At+A+Bt2-2tB-3B+Ct2-6Ct+9C
B+C=0 C=-B C=-B
A-2B-6C=0 A-2B+6B=0 A+4B=0
A-3B+9C=1 A-3B-9B=1 A-12B=1 Þ
Þ 16B=-1 ; B=-1/16 ; C=1/16 , A=-4B Þ A=1/4
F(t)= Þ originalga o’tsak
Do'stlaringiz bilan baham: |