1-mavzu. Matrisalar va determinantlar


Misol. Uchinchi tartibli determinantni hisoblashning 1) uchburchak usuli



Download 489,7 Kb.
bet4/6
Sana30.01.2023
Hajmi489,7 Kb.
#905495
1   2   3   4   5   6
Bog'liq
1 mavzu Matrisalar va ularning xossalari Matrisalar ustida amallar

Misol.
Uchinchi tartibli determinantni hisoblashning 1) uchburchak usuli
uchinchi tartibli martisa uchun |A| determinant quyidagicha hisoblanadi:
Misol.
` Bu birinchi satr elementlarini shu element turgan satr va ustunni o’chirishdan hosil bo’lgan matrisa determinantiga ko’paytirishdan hosil qilinmoqda. Masalan, 3x3 o’lchovli berilgan matrisa 1 satr va 1 ustunu o’chirilishidan hosil bo’lgan determinant elementga ko’paytirilgan. Agar biz a11 belgilashga e’tibor bersak, u holda bu usulni satr bo’yicha qo’llaganda ishora almashadi. Demak, ikkinchi qo’shiluvchi manfiy ishorali bo’ladi.
Uchinchi tartibli determinantni hisoblashning 2) Sarrus qoidasi
Determinantning xossalaridan foydalanib hisoblang
Misol.
Misol.
Misol.
Misol.
Misol.
Misol.
Misol.
1.4. Yuqori tartibli determinantlar
Ta’rif. n-tartibli kvadrat matritsaning determinanti deb, quyidagi tenglik bilan aniqlangan songa aytiladi:

Laplas yoyilmasi yordamida har qanday tartibli determinantni hisoblash mumkin. Lekin buning uchun ba’zi tushunchalar bilan tanishishimiz kerak (ba’zilaridan biz foydalandik ham).
Minorlar. A matrisa |Mij| minori deb i satr va j ustunni o’chirishdan hosil bo’lgan determinantga aytiladi.
Masalan,
matrisa uchun
Misol.




matrisa uchun minorni hisoblang.

Yechish. Uchinchi satr va birinchi ustunni o’chirib
minorni hosil qilamiz.
Minor ta’rifidan foydalanib, 3 tartibli determinant hisoblash formulasini quyidagicha yozish mumkin
Algebraik toʻldiruvchi
Algebraik to’ldiruvchi
(-1)i+j ishora aniqlikdagi |Mij | minorga │Cij│ algebraik to’ldiruvchi deyiladi. │Cij│ algebraik to’ldiruvchi ishorasi (-1)i+j. Shunday qilib, satr va ustun nomerlari yig’indisi toq bo’lsa,u holda ishora manfiy bo’ladi. Masalan, 3 tartibli A matrisada │C12│algebraik to’ldiruvchini topish uchun 1 satr va 2 ustunni o’chiramiz, 1+2=3 bo’lgani uchun hosil bo’lgan determinantni (-1)3 ga ko’paytiramiz.
Demak,

Download 489,7 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish