1. Chiziqli tenglamalar sistemasi haqida tushuncha. Sistema-ning yechimi


Chiziqli tenglamalar sistemasining yechimi mavjudligi va yagonaligi haqida teoremalar



Download 193,5 Kb.
bet2/5
Sana22.06.2022
Hajmi193,5 Kb.
#690800
1   2   3   4   5
Bog'liq
Chiziqli tenglamalar sistemasi

2. Chiziqli tenglamalar sistemasining yechimi mavjudligi va yagonaligi haqida teoremalar.
(1) umumiy ko`rinishdagi chiziqli tenglamalar sistemasining birgalikdalik va aniqlik masalasini quyidagi teorema ochib beradi.
Kroneker-Kapelli teoremasi. Chiziqli tenglamalar sistemasi birgalikda bo`lishi uchun uning asosiy matritsasi rangining kengaytirilgan matritsasi rangiga teng bo`lishi zarur va yetarli.
Agar asosiy A matritsa rangi kengaytirilgan (A | B) matritsa rangiga teng bo`lib, teng ranglar o`z navbatida noma`lumlar soni m ga teng bo`lsa, ya`ni rang(A) = rang(A | B) = m, sistema aniq bo`ladi.
Agar A matritsa rangi kengaytirilgan (A | B) matritsa rangiga teng bo`lib, teng ranglar noma`lumlar soni m dan kichik bo`lsa, ya`ni rang(A) = rang(A | B) < m, sistema aniqmas bo`ladi.
Agarda asosiy matritsa rangi kengaytirilgan matritsa rangidan kichik bo`lsa, sistema birgalikda bo`lmaydi.
n ta noma`lumli n ta chiziqli tenglamalar sistemasi normal ko`rinishda berilgan bo`lsin:


(2)

(2) sistema uchun uning aniqlik sharti muhimdir.


Kramer teoremasi. n ta noma`lumli n ta chiziqli tenglamalar sistemasi aniq bo`lishi uchun uning asosiy matritsasi determinantining noldan farqli bo`lishi zarur va yetarli. Yagona yechim ; ; …; ; …; tartiblangan tizimdan iborat bo`ladi, bu yerda Aj asosiy A matritsadan j-ustunning ozod hadlar ustuni bilan almashtirilgani bilan farq qiluvchi matritsa. Agarda detA = 0 bo`lsa, (2) sistema yoki aniqmas yoki birgalikda bo`lmaydi.
Masala. Quyida berilgan chiziqli tenglamalar sistemalarini birga-likda va aniqligini tekshiring. Birgalikdagi sistemalarni Kramer formulalari yordamida yeching:

1) 2)


3)

Berilgan sistemalar uch noma`lumli uchta chiziqli tenglamalar sistemasi bo`lgani uchun, dastlab, Kramer teoremasini tatbiq etamiz:


1) bo`lgani uchun - sistema aniq.


Yagona yechim Kramer formulalari yordamida topiladi:


, ,
. Sistema yechimi: ( -3; 2; 1).
2) . Kramer teoremasiga ko`ra, sistema yoki aniqmas yoki birgalikdamas. Kroneker-Kapelli teoremasiga murojaat etib, sistema kengaytirilgan matritsasi rangini Gauss algoritmi yorda-mida aniqlaymiz:
  .

rang(A) = 2 = 2 = rang(A | B) < 3 (noma`lumlar soni) shartlar bajarilgani uchun sistema aniqmas va quyidagi sistemaga teng kuchli:





Oxirgi sistemani Kramer formulasi yordamida yechish mumkin:





Sistema yechimi:


3) detA = 0 bo`lgani uchun sistema yoki aniqmas yoki birgalikdamas.


Sistema kengaytirilgan matritsasi rangini nollar yig`ib, hisoblaymiz:


 

rang(A) = 2 < 3 = rang(A | B) munosabat o`rinli bo`lgani uchun sistema birgalikdamas.



Download 193,5 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish